Experiencing the Use of GPS-RTK for Cadastre Surveys in Malaysia

Universiti Teknologi Malaysia and

dilu

Khairudin ANUAR, Politeknik Ungku Omar, Malaysia

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

Contents

- INTRODUCTION
- 2. CADASTRE SURVEYS IN MALAYSIA
- 3. THE USE OF GPS IN CADASTRE SURVEY
- 4. THE EXPERIMENTS
 - 1. The Simulated Case
 - 2. The Refixation Case
- 5. CONCLUSIONS

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

1. INTRODUCTION

- GPS technology has been in used for decades in geodesy and engineering works in Malaysia
- Use of GPS for cadastre surveys is still in its early stage.
 - Guidelines for the Use of GPS for Cadastre Control and Cadastre Surveys - KPU Circular 6-1999.
 - Several reports on the use of GPS rapid static for cadastre works in Malaysia has been successful.
 - Use of GPS for cadastre surveys by local surveyors, more like a 'wait-and-see' situation.
- GPS-RTK?

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

The Study

- A study was conducted by one of the author on the use of GPS-RTK for cadastre survey works in Malaysia (Anuar, 2004).
- The paper discusses experiences obtained from the study.
- Two aspects were studied,
 - the observation conditions/surrounding,
 - the computation datum used.

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

2. CADASTRE SURVEYS IN MALAYSIA

- Cadastre system in Malaysia uses the Torrens System
 - Land ownership definition system parcel of land (lot), defined by coordinates with bearings and distances for each line measured accurately, as well as the area of the parcel stated.
 - This is all stated on a Certified Plan (CP) with ownership claim and land-related information - a legal document for land or property ownership.

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

- Cadastre surveys are carried out following the Survey Regulations 1976 as well as licensed surveyors under the Licensed Land Surveyors Ordinance, 1958.
- Cadastre surveys are carried out following the three standards, namely a 1st class, 2nd class or 3rd class survey.

Survey Class	Linear misc.	Angular misc.		
I st	<1:8,000	< 1' 15"		
2 nd	1:4,000 - 1:8,000	2' 30" – 1' 15"		
3rd	>1:4,000	> 2' 30"		

4. THE EXPERIMENTS

Two experiments:

- The Simulated case
 - sky clearance is common major obstacle to GPS-RTK cadastre survey.
 - 'offset-method' was employ to overcome this problem.
- The Refixation case
 - Refixation carried out using GPS-RTK.
 - Datum issues were discussed along the way.

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

4.1 The Simulated Case

- Purpose was
 - to experience different station conditions in a GPS-RTK cadastre survey
 - how the 'offset-method' could be use to overcome this problem.
- Figure shows the sketch depicting graphically conditions for each stations.

1. Detecting the displaced station.

- Detecting displaced stations comparing with the certified values (CP)
 - coordinates of the stations in the Cassini coordinate systems
 - bearing and distances of the lot lines.
- BUT the GPS-RTK derived Cassini coordinates of the stations could not be compared directly with the CP's coordinate!
- Hence, comparison made with the bearings and distances values.
 - Ine 8-10 and line 10-11 have some problem.
 - difference of bearings are greater than the permissible limit of 1' 30" while the distances are more than 0.05m.
 - Suspected than station 10 has been displaced.
 - Other lines have shown differences in bearings and distances to be within
 the limits.

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

2. Computation for Refixation

- Line 8-12 was used as the baseline for the refixation purpose of station 10.
- Comparison of bearing and distances of line 8-10 (of the GPS-RTK derived values and that of the CP) was found to be within the permissible limits.
- Using values of bearing and distances from the CP, the 'correct' Cassini coordinate of station 10 is computed from one of the base station (in this case station 8).
- This coordinate are then transformed to the RSO coordinate for use with the GPS-RTK for the refixation work.

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

3. The Refixation Proc. using GPS-RTK

The refixation work is straight forward.

- The RSO coordinate of the new station 10 is set through the controller
- the GPS-RTK which was mounted on a pole was driven right to the new location using the stakeout mode.
- The new station was named 10TP1.
- A mark was setup for the new station and the coordinate was then re-observed (with GPS-RTK)
- The comparison shows that difference of bearing and distances are all within the permissible limits.
- Finally, Cassini from GPS-RTK derived coordinate are compared again with the total-station survey.

3rd FIG Regional Conf. for Asia and Pacific, Jakarta, Oct. 4-7, 2004

Table of Coordinate Diffferences Between GPS-RTK and Total Station after Refixation.

Station	GPS-RTK		Total Station		ΔU	ΔΤ	Diffn
	Northing	Easting	Northing	Easting	(m)	(m)	(m)
13	-55113.112	7325.141	-55113.126	7325.156	0.014	-0.015	0.02
14	-55095.808	7341.531	-55095.824	7341.547	0.016	-0.016	0.02
16	-55007.317	7425.449	-55007.309	7425.454	-0.008	-0.005	0.00
17	-55034.593	7454.209	-55034.577	7454.223	-0.016	-0.014	0.02
18	-55137.261	7599.809	-55137.238	7599.800	-0.023	0.009	0.02
22	-55147.745	7610.870	-55147.723	7610.860	-0.022	0.010	0.02
23	-55223.680	7538.850	-55223.672	7538.863	-0.008	-0.013	0.01
8	-55145.154	7455.997	-55145.175	7456.041	0.021	-0.044	0.04
10TP1	-55193.620	7410.032	-55193.634	7410.068	0.014	-0.036	0.03
12	-55155.130	7369.442	-55155.128	7369.468	-0.002	-0.026	0.02

5. CONCLUSIONS

- GPS-RTK could be use for cadastre survey works, although sky blockage will hinder its full
 - Supplemented by conventional survey techniques (offset method) .
- GPS-RTK could be used for refixation works in
 - cadastre survey.

 direct usage of the GPS-derived Cassini coordinate is not yet possible,
 - derived values of bearings and distances from the coordinate could be use instead.
- Coordinated Cadastre System (CCS) implementation!
 - GPS in direct use.