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• INS/GNSS integration forms the central navigation unit for many outdoor 

applications

• Knowledge of IMU sensor errors

• Impact of accelerometer bias modelling on the navigation solution accuracy

Objectives of the investigation
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1. Analysis of long-term IMU recordings

2. Modelling of IMU errors in a loose INS/GNSS integration architecture

3. Simulation study and results

4. Conclusions and Outlook

Outline
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• Analysis based on the Allan Variance Method

• Goal: Identification and quantification of the underlying noise processes

• Analysis of a tactical grade IMU (3-axis servo-accelerometer & 3-axis fiber optic gyro)

Analysis of long-term IMU recordings
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1. Data record length: 6 hours (non-moving IMU) 

2. Compute the average of each block (n … number of blocks)

List of averages ത𝑢 𝜏 1 ത𝑢 𝜏 2 ⋯ ത𝑢 𝜏 𝑛

3. Allan variance [1]

𝜎2 𝜏 =
1

2 𝑛 − 1
෍

𝑖

𝑛−1

ത𝑢 𝜏 𝑖+1 − ത𝑢 𝜏 𝑖
2

Allan deviation: 𝜎 𝜏 = 𝜎2 𝜏

Allan Variance – Basic concept

Adapted from [3] 

IEEE Standard  952

Adapted from [2]
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Allan Variance – Results I 

𝑧𝑔 𝑡 = 𝑧𝑔,𝑁 𝑡 𝑧𝑎 𝑡 = 𝑧𝑎,𝐴 𝑡 + 𝑧𝑎,𝑁 𝑡 + 𝑧𝑎,𝐵 𝑡 + 𝑧𝑎,𝐾 𝑡

Quantization noise White noise Flicker noise Random walkWhite noise
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Allan Variance – Results II 

• Estimating the parameters of the noise processes

via a LSQ fit

• Defining the parameter vector 𝝑

𝝑 = 𝑆𝑎,𝐴 𝑆𝑎,𝑁 𝑆𝑎,𝐵 𝑇𝐵 𝑆𝑎,𝐾

• First order Gauß Markov (FOGM) process is used

to approximate the flicker noise process
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• IMU observation model

෨𝒇 = 𝒇 + 𝒃𝑎 + 𝒛𝑎,𝑁

෥𝝎 = 𝝎+ 𝒃𝑔 + 𝒛𝑔,𝑁

• IMU bias model

𝒃𝑎 = 𝒃𝑎,0 + 𝒛𝑎,𝐵 + 𝒛𝑎,𝐾

𝒃𝑔 = 𝒃𝑔,0

Modelling of IMU errors in a loose INS/GNSS integration architecture
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• Structure of the classical system model [4]:

Modelling of IMU errors in a loose INS/GNSS integration architecture
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𝛿 ሶ𝒃𝑎
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=
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𝑭𝑣𝛹 𝑭𝒗𝒗 𝑭𝑣𝑟 𝑪𝑏
𝑛 𝟎3

𝑭𝑟𝛹 𝑭𝒓𝒗 𝑭𝑟𝑟 𝟎3 𝟎3
𝟎3 𝟎3 𝟎3 𝟎3 𝟎3
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+
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𝑛

𝟎3 𝟎3
𝟎3 𝟎3
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𝒘𝑔,𝑁

𝒘𝑎,𝑁

• Structure of the detailed system model:

𝛿 ሶ𝜳𝑛

𝛿 ሶ𝒗𝑛

𝛿 ሶ𝒓𝑛

𝛿 ሶ𝒃𝑎
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𝑭𝑣𝛹 𝑭𝒗𝒗 𝑭𝑣𝑟 𝑪𝑏
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𝑭𝑟𝛹 𝑭𝒓𝒗 𝑭𝑟𝑟 𝟎3 𝟎3
𝟎3 𝟎3 𝟎3 −𝑰3𝑇𝐵
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𝑛 𝟎3 𝟎3
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𝛿 ሶ𝒙 𝑭 𝛿𝒙 𝑮 𝒘
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Modelling of IMU errors in a loose INS/GNSS integration architecture

• Classical system noise VCM:

• Detailed system noise VCM: 𝑸𝑘−1
′ = 𝑻𝑘−1

′ 𝑮𝑘−1
′

𝑰3𝑆𝑔,𝑁
𝑰3𝑆𝑎,𝑁

𝑰3𝑆𝑎,𝐵
𝑰3𝑆𝑎,𝐾

𝑮′𝑘−1
𝑇

𝑻′𝑘−1
𝑇

∆𝑡

𝑸𝑘−1 = 𝑻𝑘−1𝑮𝑘−1
𝑰3𝑆𝑔,𝑁

𝑰3𝑆𝑎,𝑁
𝑮𝑘−1
𝑇 𝑻𝑘−1

𝑇 ∆𝑡
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1. Classical modeling approach via WN processes (N model)

– Applying the manufacturer WN specification

2. Detailed modeling approach via WN, FOGM and RW (NBK model)

– Applying the estimated noise parameters

The two modeling approaches are compared for two cases:

1. Continuous GNSS coverage (1 Hz)

2. GNSS signal outage over a period of 5 minutes

Simulation study
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• True IMU and GNSS observations are determined from the simulated motion

scenario

• Generate sensor errors:

– RTK precision for the GNSS observation errors

– Replicate an IMU with identical stochastic properties as those of the IMU 

investigated (except quantization noise)

Simulation study – Motion scenario
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Simulation results – Case 1 (No GNSS outages)

White noise of NBK model: 8.2 𝜇g/Hz 
White noise of N model: 50 𝜇𝑔/Hz
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Simulation results – Case 1 (No GNSS outages)

White noise of NBK model: 8.2 𝜇g/Hz 
White noise of N model: 50 𝜇𝑔/Hz
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Simulation results – Case 2 (GNSS outages for 5 min)
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Simulation results – Case 2 (GNSS outages for 5 min)
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• Successful identification and quantification of the different noise processes for the investigated IMU

• Incorporation of a detailed accelerometer bias model into the loose INS/GNSS integration architecture

– Additional research to include quantization noise

• The largest contribution to the accuracy of the navigation solution came from errors in the gyros and not from errors in 

the accelerometers

Conclusions
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• Solely estimated standard deviations were investigated

– Investigation of true errors is possible in case of simulation studies

• Environmental induced errors are not taken into account by the AV method, but are frequently encountered in practice

– Vibrations, temperature changes

• The conducted investigations will be verified on real world applications

– Coverage of a wide range of vehicle dynamics

Outlook
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• Overall PSD of the stochastic accelerometer errors

(Superposition principle)

𝑆𝑧𝑎 𝑓 = 𝑆𝑧𝑎,𝐴 𝑓 + 𝑆𝑧𝑎,𝑁 𝑓 + 𝑆𝑧𝑎,𝐵 𝑓 + 𝑆𝑧𝑎,𝐾 𝑓

• AV is related to the PSD via

𝜎𝑧
2 𝜏 = 4න

0

∞

𝑆𝑧 𝑓
sin4 𝜋𝑓𝜏

𝜋𝑓𝜏 2 𝑑𝑓

• Overall AV for the accelerometers

𝜎𝑧𝑎
2 𝜏 = 𝜎𝑧𝑎,𝐴

2 𝜏 + 𝜎𝑧𝑎,𝑁
2 𝜏 + 𝜎𝑧𝑎,𝐵

2 𝜏 + 𝜎𝑧𝑎,𝐾
2 𝜏

=
3𝑆𝑎,𝐴
𝜏2

+
𝑆𝑎,𝑁
𝜏

+
𝑆𝑎,𝐵𝑇𝐵

2

𝜏
1 −

𝑇𝐵
2𝜏

3 − 4𝑒
−
𝜏
𝑇𝐵 + 4𝑒

−
2𝜏
𝑇𝐵 +

𝑆𝑎,𝐾
3

𝜏

• Defining the parameter vector 𝝑

𝝑 = 𝑆𝑎,𝐴 𝑆𝑎,𝑁 𝑆𝑎,𝐴 𝑇𝐵 𝑆𝑎,𝐾

Appendix VI


