

Geodetic data management in Australia

- Responsibility of all Australian Jurisdictions
- No standardised approach for geodetic data management
- Data collection via projects/campaigns and CORS
- High level of variability in:
 - Quality, procedural consistency
 - Instruments, standards, reduction, people
 - DBMS, proprietary binary and text file archives
- Data translation a common burden and prone to error

Geodetic data management in NZ

- Geodetic data managed by one national agency Land Information New Zealand (LINZ)
- Data stored within Landonline database
- Geodetic survey and physical maintenance mostly carried out via contracts with private firms
- Data submitted via text files on physical media

Design goals for eGeodesy project

- Document process of datum maintenance in UML
- Geodetic data model requirements:
 - Standardise the vocabulary and encoding
 - Facilitate exchange between software products
 - Facilitate distributed network processing
 - Open standards, cross platform, object oriented
- Reduce data duplication and data "silos"
- Enable online geodetic measurement 'validation'
- Eliminate translation dependency

UML development 4D datum References Aus/NZ ISO 19111:2004 Time All GNSS & terrestrial geodetic measurements Geodetic station and CORS information References SOPAC IGS GNSS site log schema Physical Mark and monument information Adjustment configuration and results Projects and roles Quality and standards

Example use cases and benefits

- 1. Data transfer amongst various applications
- 2. Collation of data from different custodians
- 3. Online submission and validation of geodetic measurements

