
TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

1/13

Implementation of a General Web Application Program Interface for
Geoinformatics

Jan PYTEL, Jiri POSPISIL, Ales CEPEK, Czech Republic

Key words: Java language, C++ language, servlets, CGI, web applications

SUMMARY

C++ language was used for creating web applications at the department of Mapping and
Cartography for many years. Plenty of projects started to be very large-scale and complicated
to maintain. Consequently, the traditional way of adding functionality to a Web Server which
previously has been used (CGI programs) started being usefulness. We were looking for
some solutions - particularly open source ones. We have tried many languages (solutions)
and finally we chose the Java language and started writing servlets. Using the Java language
(servlets) has significantly simplified the development of web applications. As a result, our
developing cycle was cut down. Because of Java JNI (Java Native Interface) it is still
possible to use C++ libraries which we are using. The main goal of this article is to share our
practical experiences with rewriting typical CGI web application and creating complex
geoinformatic web application.

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

2/13

 Implementation of a General Web Application Program Interface for
Geoinformatics

Jan PYTEL, Jiri POSPISIL, Ales CEPEK, Czech Republic

1. Introduction

The modern era brings new phenomenon: World Wide Web, a term frequently used
(incorrectly) when referring to "The Internet". It stands for the universe of hypertext servers
(HTTP servers), more commonly called "web servers", which are the servers that serve web
pages to web browsers. A plain www page (HTML document) is static, which means that a
text file doesn't change - for example: CV, research papers, etc. When someone would like
create web pages that contain dynamic content a plain www pages are not sufficient: a
solution is to create CGI programs with using languages like PHP, C++, Perl, etc.

PHP or C++ languages were used for creating web applications at the department of Mapping
and Cartography for many years, some examples are:

− Internet access to the database of GPS observation via www. The project is written in
C++ language:

http://www.vugtk.cz/gpsdb

− online transformation between ETRF and S-JTSK

http://gama.fsv.cvut.cz/~kost/vypocty.

Plenty of projects started to be very large-scale and complicated to maintain. Consequently,
the traditional way of adding functionality to a Web Server which was used (CGI programs)
has become unsustainable. We were looking for alternatives - particularly open source ones.
We have tried many languages (solutions) and finally we chose the Java language and started
writing servlets. This paper briefly introduces the servlet concept and explains how to create
general web application program interface for geoinformatics.

2. COMMON GATEWAY INTERFACE – CGI

The Common Gateway Interface (CGI) programs are "normal" programs running on the
server side - input data for CGI programs are requests from a client (data sent by web
browser - HTTP header with other information). Output from CGI program is sent back to the
client (web browser). This concept means that client side does not need to take care which
type of page is requested. Side dynamic www pages and static www pages are transparent -
client sends a request with data and obtains www page. The CGI programs have to be placed
in the special directory (usually /usr/lib/cgi-bin), the directory where system expects CGI
programs.

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

3/13

An example of dummy CGI program "date" (used script language bash) which returns current
date in ISO 8601 format 'YEAR-MONTH-DAY’:

 #!/bin/bash

 echo 'Content-type: text/html'
 echo
 echo '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">'
 echo '<html>'
 echo '<title>Current date</title>'
 echo '</head>'
 echo '<body>'
 echo '<h1>Date:</h1>'
 echo '<pre>'

 /bin/date -I

 echo '</pre>'
 echo '</body>'
 echo '</html>'

We simply copy the previous program/script into directory cgi-bin and set the file execution
permission. No other steps are necessary. Thus we have demonstrated that developing CGI
programs is pretty easy. We can test the develop CGI program in terminal now:

 $wget http://localhost/cgi-bin/date -O tmp-date && cat tmp-date && rm tmp-date

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">'
 <html>
 <title>Current date</title>
 </head>
 <body>
 <h1>Date:</h1>
 <pre>
 2006-06-25
 </pre>
 </body>
 </html>

Another example is CGI a program written in C++ language. The CGI program returns input
(data sent by client - without HTTP header). From the following example it will be quite
obvious that we have written "normal" C++ program which reads data from input and returns
text page:

 #include<iostream>
 #include<string>

 int main()
 {
 using namespace std;

 string s;

 cout << "Content-type: text/html\n\n";
 cout << "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 3.2//EN]\"> \n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Input data</title>\n";

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

4/13

 cout << "</head>\n";
 cout << "<body>\n";
 cout << "<h1>Input data:</h1>\n";
 cout << "<pre>\n";

 cin >> s;

 cout << s;

 cout << "</pre>\n";
 cout << "</body>\n";
 cout << "</html>\n;
 }

CGI programs can be written in many languages, for example PHP, C++, Python, etc.
Creating CGI programs is pretty easy, but the CGI concept has some limitations:

− each request is answered in a separate process by a separate instance of CGI program

(CGI program needs to be loaded and started for each CGI request)
− use database pooling or interaction between two CGI programs is problematic
− platform dependence
− lack of scalability

3. SERVLETS

A servlet is a Java application that runs within a Web server. Servlets recieve and respond the
requests from Web clients. We have to use servlet container in order to run servlets. There
are many of server containers available, we have chosen Apache Tomcat server container,
discussed in the next section.

On SUN pages (SUN Company is creator of servlets) we can read more precise explanation:
"A servlet is a Java programming language class used to extend the capabilities of servers
that host applications accessed via a request-response programming model. Although servlets
can respond to any type of request, they are commonly used to extend the applications hosted
by Web servers. For such applications, Java Servlet technology defines HTTP-specific servlet
classes."
Java Servlet API ([1]) is a class library for servlets. Java Servlet API contains class
HttpServlet, which provides methods, such as doGet and doPost methods for handling HTTP
services. In other words: when we would like create new servlet we have to create new class
extends HttpServlet class and override methods doGet and doPost - refer to next example.

Servlets have several advantages over CGI:
− servlet does not run in a separate process, stays in memory between requests
− there is only one single instance which answers all requests concurrently - this saves

memory and allows a servlet to easily manage persistent data
− platform independence
− Java language has very rich libraries for working with HTTP request, HTTP responses,

etc.

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

5/13

An example of first servlet:

package cz.examples;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<html>");
 out.println("<head><title>Hello world.</title></head>");
 out.println("<body>Hello world</body>");
 out.println("</html>");

 out.close();
 }

 protected void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 doGet(req,res);
 }
}

When servlet HelloWorldServlet is requested a URL inside web browser, sentence "Hello
world" will appear. Because there is only a single instance which answers all requests
concurrently - it means that we can easily manage persistent data. For example, we would
like to know how many times servlet HelloWorldServlet was requested:

package cz.examples;

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorldRequestedServlet extends HttpServlet
{
 private int times = 0;

 protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<html>");
 out.println("<head><title>Hello world.</title></head>");

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

6/13

 out.println("<body>Hello world!
 This page was requested " + ++times + " times.</body>");
 out.println("</html>");

 out.close();
 }

 protected void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 doGet(req,res);
 }
}

To achieve this behaviour using CGI programs, it would be quite complicated. Java Servlet
API contains rich set of useful classes: one of those classes is HttpServletRequest which
provides request information for HTTP servlets and contains many useful methods. Next
example is servlet NumericalServlet, the servlet excepted two parameters "argument1" and
"argument2" and returns the following results:

package cz.examples;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class NumericalServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");

 String argument1 = req.getParameter("argument1");
 String argument2 = req.getParameter("argument2");

 PrintWriter out = res.getWriter();

 if (((argument1 == null) || (argument2 == null))
 {
 out.println("<html><body>Error - wrong arguments</body></html>");
 out.close();

 return;
 }

 double arg1 = Double.parseDouble(argument1);
 double arg2 = Double.parseDouble(argument2);

 out.println("<html>");
 out.println("<head><title>NumericalServlet</title></head>");
 out.println("<body>");
 out.println("Results:
");

 out.println(arg1 + " + " + arg2 + " = " + (arg1 + arg2) + "
");
 out.println(arg1 + " - " + arg2 + " = " + (arg1 - arg2) + "
");
 out.println(arg1 + " * " + arg2 + " = " + (arg1 * arg2) + "
");

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

7/13

 out.println("</html>");
 out.close();
 }

 protected void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 doGet(req,res);
 }
}

4. JAVA SERVLET CONTAINER – APACHE TOMCAT

When working with servlets, we have to use servlet container in order to run servlets. There
are many server containers available, we have chosen Apache Tomcat Servlet/JSP container.
This container is free of software and is released under Apache Software Licence
(http://www.apache.org/licences). First of all, we have to download binary distribution
(jakarta-tomcat-5.0.28.tar.gz) from the site http://tomcat.apache.org/. It is supposed that we
have installed Java Development Kit (JDK) 1.2 or later platform.

Now we have to decide in which directory Tomcat will be located (directory represents the
root of Tomcat installation) - common directory is /opt where we will extract gzipped tarball
of binary distribution:

$mv jakarta-tomcat-5.0.28.tar.gz /opt/
$tar xvzf jakarta-tomcat-5.0.28.tar.gz

Now it is necessary to modify two files

− /opt/jakarta-tomcat-5.0.28/conf/server.xml - we modify an attribute "port" of element
<Server>. The attribute "port" describes on which port Tomcat will be running

− /opt/jakarta-tomcat-5.0.28/bin/catalina.sh - we have to set the JAVA_HOME environment
variable to tell Tomcat where to find Java: set JAVA_HOME=/opt/jdk1.5.0

From now Tomcat is prepared for running. Before starting Tomcat (by /opt/jakarta-tomcat-
5.0.28/bin/startup.sh) we should deploy our applications.

5. DEPLOYING APPLICATION

In order to be executed, a web application must be deployed on a servlet container. A web
application contains servlets and it is defined as a hierarchy of directories and files in a
standard layout. The top-level directory of the web application hierarchy is also the
document root of web application. There are plain HTML files at this place. A web
application has defined this hierarchy of directories:

− *.html, *.htm - The HTML pages, along with the other files, that must be visible to the
client browser (stylesheet files, and images)

− /WEB-INF/web.xml - The Web Application Deployment Descriptor for the application.
This is a XML file describing the servlets which make up an application, along with any
initialization parameters.

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

8/13

− /WEB-INF/classes/ - This directory contains any Java class files (and associated
resources) required for the application, including both servlet and non-servlet classes.

− /WEB-INF/lib/ - This directory contains JAR files that consist of Java class files required
for an application.

In order to continue with our examples (servlets HelloWorldServlet,
HelloWorldRequestedServlet, NumericalServlet) we have to create a web application (named
exampleservlets):
− create directory /opt/jakarta-tomcat-5.0.28/webapps/exampleservlets, in this directory

create the above mentioned hierarchy
− compile (with program javac) all three servlets
− copy .class files into /WEB-INF/classes/ directory (because the examples are in package

cz.examples, copy .class files into /WEB-INF/classes/cz/examples/ directory)
− modify /WEB-INF/web.xml. As mentioned above, the /WEB-INF/web.xml file contains

the Web Application Deployment Descriptor for a application. As the filename extension
implies, this file is an XML document, and defines everything about the application that a
server needs to know. The complete syntax and semantics for the deployment descriptor
is defined in [4]. In our case web.xml looks like:

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

 <web-app>

 <display-name>Example webapplication</display-name>
 <description>
 This is a simple webapplication for demonstrating.
 </description>

 <servlet>
 <servlet-name>HelloWorldServlet</servlet-name>
 <servlet-class>cz.examples.HelloWorldServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>HelloWorldServlet</servlet-name>
 <url-pattern>/HelloWorldServlet</url-pattern>
 </servlet-mapping>

 <servlet>
 <servlet-name>HelloWorldRequestedServlet</servlet-name>
 <servlet-class>cz.examples.HelloWorldRequestedServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>HelloWorldRequestedServlet</servlet-name>
 <url-pattern>/HelloWorldRequestedServlet</url-pattern>
 </servlet-mapping>

 <servlet>
 <servlet-name>NumericalServlet</servlet-name>
 <servlet-class>cz.examples.NumericalServlet</servlet-class>
 </servlet>

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

9/13

 <servlet-mapping>
 <servlet-name>NumericalServlet</servlet-name>
 <url-pattern>/NumericalServlet</url-pattern>
 </servlet-mapping>

 </web-app>

Now everything needed for running the web application is done. After starting up Tomcat,
we can use web browser and test our examples. We can find the servlets on the following
addresses (port means port where tomcat is running):

http://localhost:port/exampleservlets/NumericalServlet,

http://localhost:port/exampleservlets/HelloWorldServlet,

http://localhost:port/exampleservlets/HelloWorldRequestedServlet.

6. GENERAL WEB APPLICATION PROGRAM FOR INTERFACE FOR
GEOMATICS

6.1 Requirements for Used Technology

During the development general web application program interface for geoinformatics were
required following technology features:

− the development under OS GNU/Linux with using free software ([3])
− platform independency
− ability to use effectively existing source codes (most of them in C++ language) already

finished projects
− used MVC paradigm
− database access, database connection pooling
− using of sessions and session management
Java language and technology of servlets were chosen for development of the project. Servlet
technology satisfies all our requirements.

This chapter contains all used technologies and share experiences with creating general web
application program interface for geoinformatics (application with using servlet technology
and MVC paradigm).

6.2 Used Design Patterns

Interface is fully object-oriented and using several design patterns (a design pattern is a
general repeatable solution to a commonly-occurring problem in software design). For
example we used patterns Singleton, AbstractFactory, Observer and Facade.

One of the main goals was selection of object oriented model, which would separate
computing core from presentation part (the way how the results will be displayed for the user
on the screen). The programmer of computing core usually does not care for the layout of

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

10/13

input and output data. The programmer usually only describe the expected data on the input
side together with description of the results returned by program. Ideal solution turned to be
MVC software design pattern, i.e. design pattern on which this system is based on.

MVC paradigm is a way of breaking application into three parts ([7]):

− Model - represents of the information on which application operates (e.g. describe of
database system, computing model of geodetic tasks, …)

− View - renders model into a form suitable for users, typically a user interface element.
MVC is often seen in web application where the view is the HTML page and the code
which gathers dynamic data for the page

− Controller –responds to events, typically user actions, and invokes changes on the model
and perhaps the view.

6.3 Template Engine Velocity

The selection of template engine for component View was essential from the point of view of
the creation application. The complete separation of the Model, View respectively from the
presentation part was the key requirement on the template engine. The developer only
describes required input and output data (specifies names of variables representing input and
results data – e.g. collections, strings, etc.).

Developers have chosen template engine Velocity:

http://jakarta.apache.org/velocity.

Template engine Velocity is one of the parts of the Jakarta’s project developed by Apache
software foundation and is released under the licence Apache Licence. The web pages of the
project contain the following:

The Velocity User Guide is intended to help page designers and content providers get
acquainted with Velocity and the syntax of its simple yet powerful scripting language, the
Velocity Template Language (VTL). Many of the examples in this guide deal with using
Velocity to embed dynamic content in web sites, but all VTL examples are equally applicable
to other pages and templates.

Velocity is a Java-based template engine. It permits web page designers to reference methods
defined in Java code. Web designers can work in parallel with Java programmers to develop
web sites according to the Model-View-Controller (MVC) model, meaning that web page
designers can focus solely on creating a well-designed site, and programmers can focus
solely on writing top-notch code.

It is necessary to stick to the following pattern when using Velocity:
− initialization
− creation of object context
− fulfillment of the Velocity context by data
− selection of template
− merging context and template into output file

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

11/13

Velocity Context represents variable part of the page. From the programmer’s standpoint,
Velocity context is a map of Objects. Velocity Template Language (VLT) is very simple; for
the description of the template language refer to:

http://jakarta.apache.org/velocity/docs/user-guide.html.

The following text contains the extracts from the template language:
<html>
<body>
#set($foo = "Velocity")
Hello $foo World!
</body>
<html>

#if($value < 0)

 value $value is negative
#elseif($value == 0)

 value $value is equal 0
#else

 value $value is positive
#end

<p>
#foreach($student in $university)
$student.nickname $student.surname - $student.birthday

 #end
 </p>

6.4 Computing Task – from Developer’s Standpoint

General web application program interface for geoinformatics allows adding arbitrary
computing tasks. Those tasks are accessible for the users using well-arranged menu.
Currently, it is possible to add the following three types of tasks into the system:

− tasks written in Java language, implementing interface ComputingTask
− tasks written in arbitrary programming language, distributed as standalone executable

programs – the system allows execution of those programs
− tasks written in C++ language.

The task written in Java language is only class implementing interface ComputingTask.:
 public interface ComputingTask {

 void setParameters(Map<String, String> input);
 Map getResults();

 OutputStream getResultStream();
 void compute();
 boolean wasComputed();
 }

Input data for the computing task are stored in Map collection. The key representing name of
the variable input has String type. As a result, it is necessary explicitly retype data to

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

12/13

appropriate data types. The results may be returned in collection Map, or in the class
OutputStream.

The similar approach used in Java language is applied also for the tasks written in C++
language. In this case, JNI code is used. Final application is called Manala and can be found
on the following web page http://gama.fsv.cvut.cz/manala.

7. CONCLUSION

The Java language (servlets) has significantly simplified the development of web
applications. As a result, developing cycle was cut down. Because of Java JNI (Java Native
Interface) it is still possible to use C++ libraries which are done. We have started using the
Java language particularly for web applications in 2005. We have rewritten many of our
applications. Switch development from "typical CGI programming" to "Java servlet
programming" is surprisingly easy with amazing benefit.
Development of General web application program interface for geoinformatics has brought
completely new requirements on the web application program development. The current
technology for development www applications used by the department of Mapping and
Cartography turned to be insufficient. The development has been significantly improved by
using servlet technology and framework MVC. As a result we developed application program
interface for geoinformatics Manala.

ACKNOWLEDGEMENTS

This research has been supported by GA CR 103/06/0094 "Processing and the Analysis of the
Product of the Mass Data Collection Realized by Terrestrial Scanning Systems"

REFERENCES
Java Servlet API, http://java.sun.com/products/servlet/index.html

Common Gateway Interface, http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

Apache-Tomcat-Tutorial, http://www.coreservlets.com/Apache-Tomcat-Tutorial

Servlet Essentias, http://www.novocode.com/doc/servlet-essentials/

Apache Tomcat Servlet Container, http://jakarta.apache.org

Chapter 13 of the Servlet API Specification

 http://en.wikipedia.org/wiki/Model_view_controller

TS 82 – e-Governance - Developments
Jan Pytel, Jiri Pospisil, Ales Cepek
Implementation of General Web Application Program Interface for Geoinformatics

Shaping the Change
XXIII FIG Congress
Munich, Germany, October 8-13, 2006

13/13

BIOGRAPHICAL NOTES

Ales Cepek is a professor of geodesy from 2003, working at the Department of Mapping and
Cartography, Faculty of Civil Engineering, Czech Technical University, Prague, Czech
Republic (since 1992). At present conducting research in the field of applications of XML
and object-oriented processing of geodetic and cartographic data.

Jan Pytel is a senior lecturer at the department of Mapping and Cartography, Faculty of Civil
Engineering, Czech Technical University, Prague, Czech Republic (since 2006). Jan Pytel is
interested in software development, object-oriented technologies and web services.

Jiri Popisil is an associated professor at the Department of Special geodesy. Cyrrently his
research work is focused on data processing of geodetic observations and 3D laser scaners.

CONTACTS

Ales Cepek, Jan Pytel
Dept. Of Mapping and Cartography
Jiri Pospíšil
Dept. of Special Geodesy
Faculty of Civil Engineering
Czech Technical University in Prague
Thakurova 7
166 29 Prague 6
CZECH REPUBLIC
Tel. + 420 223 354 647
Fax + 420 224 355 419
Email: cepek@fsv.cvut.cz, jan.pytel@fsv.cvut.cz, pospisil@fsv.cvut.cz
Web site: http://gama.fsv.cvut.cz/~cepek, http://gama.fsv.cvut.cz/~pytel

