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SUMMARY  
 
The definition of a valid 3D parcel must be correct and unambiguous, because an error or 
ambiguity in the definition of the extent of a property can lead to expensive legal disputes or 
to problems with handling 3D parcels in the information systems or problems during data 
transfer between two systems. This paper develops a rigorous axiomatic definition of a 3D 
parcel, and its relationship with adjoining parcels within a space partition. Since the 
requirements of different jurisdictions mandate different levels of validation, some of the 
axioms are identified as optional. For example, a jurisdiction may require that a parcel must 
be contiguous, while another may not require this. In earlier publications the axioms 
concerning valid 3D parcels (within a partition) are formulated in natural language. In this 
paper we will further formalize this by using mathematical expressions. We also want to 
prove the necessity of all axioms, i.e. is our set of axioms minimal or are they perhaps 
overlapping? We show that one of the earlier proposed axioms (A4) is implied by axiom A5 
(see discussion in section 3.3) and can be omitted. In order to demonstrate the necessity and 
independence of the remaining set of axioms, a series of test cases is presented. Each case 
violates a single axiom and passes all other axioms, thus showing that the set of axioms is 
non-redundant. In addition, real examples of 3D parcels (From Queensland, Australia), are 
tested against the validation suite. 
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1. INTRODUCTION 
 
As the value of land in the urban regions of the world increases, there is a trend towards the 
subdivision of property rights in 3D. That is to say, rights to land may be replaced by rights to 
the space above and below the land. As a result, the simple plans of subdivision that are used 
in defining property rights on the surface of the earth are being replaced by more complex 3D 
spatial definitions. This trend has been observed in many different countries and jurisdictions 
around the world (van Oosterom, Stoter, Ploeger, Thompson and Karki 2011). 
An important issue in the framing of these definitions is that they must be correct and 
unambiguous, because an error or ambiguity in the definition of the extent of a property can 
lead to expensive legal disputes. This paper addresses two problems: 1. the modelling of a 
single 3D cadastral parcel, and 2. the modelling of a complete 3D spatial partition. 
This paper develops a rigorous axiomatic definition of a 3D parcel (spatial unit), and its 
relationship with adjoining parcels. Since the requirements of different jurisdictions mandate 
different levels of validation, some of the axioms are identified as optional. For example, a 
jurisdiction may require that a parcel be contiguous, while another may not. The suggested 
axioms are based on Gröger and Plümmer (2011), however they have been modified to reflect 
these cadastral requirements. Our first steps in this direction were described in our work 
(Thompson and van Oosterom 2012) In both these papers the definitions, axioms and 
theorems concerning valid 3D objects (within a partition) are formulated in natural language. 
In this paper we will further formalize this by using mathematical formalism. We also 
examine the necessity of all axioms, i.e. is our set of axioms minimal or are they perhaps 
overlapping? A similar question was raised, but not yet answered, in a recent paper on valid 
3D topology structures in general (Brugman, Tijssen and van Oosterom 2011). 
In general, it is not possible to prove that this or any set of axioms is complete, because it is 
always possible to find new cases of “unreasonable” parcels that pass all the validation tests, 
but the set presented here is shown to be a useful, non-redundant set of axioms that can be 
used to define practical validation tests, and therefore assist in the reliable transfer of 3D 
parcel data.  
The remainder of this paper is organized as follows. Section 2 provides background material, 
such as explaining the issues with finite precision, the specific requirements for representing 
3D parcels, and the nomenclature used in the paper. The axioms for valid 3D parcels are 
given as mathematical expressions in Section 3. The representation to unbounded objects (to 
above or below) as defined in the Land Administration Domain Model is discussed in Section 
4. Finally, the main conclusions and future research topics are given in Section 5.  
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2. BACKGROUND 
 
The representation of 3D objects in, for example CAD (Computer Aided Design/Drafting) is 
not new, and significant work has been done on ensuring that the computer-based model is 
valid and is a good representation of the real-world object as it exists, or as it is to be 
constructed. The problem with the cadastral parcel is slightly different. Cadastral parcels are 
not “real-world” objects, although they may sometimes be associated with them. A cadastral 
parcel is a theoretical definition of space. One result of this is that the validation rules of 
cadastral parcels may have differences from the rules for CAD. 
The approach taken by Oracle Spatial is described in (Kazar, Kothuri, van Oosterom and 
Ravada 2008). This provides a clear description of the rules for validating 3D geometries that 
are to be imported into the Oracle database, but has restrictions on the boundary surface 
representations that are problematic for cadastral data. 
(Gröger and Plümer 2005) give a simple set of axioms that define a “2.8D” coverage – which 
has many of the required attributes of the problem domain, but with restrictions. One of the 
restrictions – the inability to model bridges or tunnels has been removed in a later paper 
(Gröger and Plümmer 2011). This approach, based on the “2.8D” paradigm is also unsuitable 
for cadastral parcels as requires that boundary surfaces be 2D manifolds (Thompson and van 
Oosterom 2012). 

Note – there 
is no shared 
face 
between the 
two parts of 
this object 
 

C A B 

 
Figure 1. Cases A and B are disallowed by the axioms of Gröger and Plümer. Case C is disallowed by the 
Oracle Spatial validation rules 

 

2.1 Finite precision 
In the 2D world of GIS, the problem of finite precision of computation is often addressed by 
the process of normalisation (Milenkovic 1988), or some variant. This paper extends the 
concept into 3D. It is critical to the approach that there exists a tolerance value  with the 
characteristic that all arithmetic operations can be assured to give a result that is correct to an 
order of magnitude smaller that  (Milenkovic uses 1/10). 
This gives rise to a question of point identity. There is a distinction to be made between points 
which are close together, points at zero distance apart, and points which are identified as the 
same logically. In this paper, it is assumed that points are uniquely identified (by name), and 
so the statement that points must be a minimum of  apart excludes the possibility that two 
points are at the same location (in x, y and z). 
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2.2 Cadastral parcels 
Although cadastral parcels in 3D have a similarity to 3D objects, at least in terms of their 
modelling and computer representation, there are significant differences. 

1. A cadastral parcel is not physical object, and cannot be seen (although it may contain 
or even be defined by real world objects). 

2. The definition of a cadastral parcel may have points, lines, or faces in common with 
adjoining parcels, and this fact must be clear in the definition. For example, if in 
Figure 1, objects A and B represent pairs of cadastral parcels, the sharing of the 
point/line is significant. By contrast if these objects represent part of a 3D city model 
for example, the parts can simply be moved apart slightly to allow the rules of Gröger 
and Plümer to be observed.  

3. A cadastral parcel may not be fully bounded. This case arises because in many 
jurisdictions, the definition of the conventional 2D land parcel has no top or bottom 
defined. Thus, if a 3D parcel is excised from a 2D parcel, the remaining space may 
have no upper surface, or lower surface. 

 
2.3 Nomenclature 
In the mathematical space (R3) (Note – this assumes exact arithmetic for the purpose of the 
definitions). 
Let P be the set of all real-number valued points p = (x,y,z).  

For p1 = (x1,y1,z1), p2 = (x2,y2,z2), D(p1, p2) =def 
2

21
2

21
2

21 )()()( zzyyxx   . 

For p1, p2  P, p1 = p2 =def D(p1, p2) = 0; 
In what follows, where the context is clear, the definitions of variables are omitted. For 
example, if p1 represents a point, the definition p1  P will be omitted. 
 

A node n  P is a special case of point, which can be represented in the number system of the 
computer (for example as a set of floating point numbers). 
Let N be the set of all possible nodes, N  P.  
 
A directed-edge e is an ordered pair of nodes e = (n1, n2):  
Let E be the set of all possible directed-edges. 
For directed edges e1 = (n1, n2), e2 = (m1, m2)  E,  

e1 = e2 =def  n1 = m1  n2 = m2 
e1  e2 =def  n1 = m2  n2 = m1 
ē1 =def (n2, n1)  

The notation is used that n  e means if e = (n1, n2) then n = n1 or n = n2.  

On(p, e) =def  t  R: 0  t  1, x = x2 + t(x1-x2), y = y2 + t(y1-y2), z = z2 + t(z1-z2).  
 Where e = (n1,n2), n1 = (x1,y1,z1), n2 = (x2,y2,z2), 

For directed-edge e, point p, D(p, e) = 
),( 1

min
epOn

D(p, p1). 

For directed-edges e1, e2, D(e1,e2) = 
),( 11

min
epOn

D(p1,e2). 

A face f is defined as a set of nodes fn, a set of directed-edges fe and a tuple of numbers fp = 
(a,b,c,d): a,b,c,d  R  restricted as follows: 
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e = (n1,n2)  fe: n1, n2  fn. 
n  fn: {e1=(n1,n2): n1 = n} and {e2=(n1,n2): n2 = n} are of same cardinality. 
a2+b2+c2 = 1; 

f =def f(fn, fe, fp). Where the context is clear, f will be used to mean fe, fn or fp. e.g. n  f. 
The plane for face fp = (a,b,c,d) is {p = (x,y,z)  P: ax+by+cz+d = 0}. 
Let F the set of all possible faces. 
For any faces defined on the same set of nodes, the plane parameters must agree. 

For f = f(fn, fe, fp), f’ = f’(f’n, f’e, f’p), fn = f’n  fp = f’p  fp = -f’p. 

This can be a difficult issue, because if the faces’ planar parameters are not supplied, it is up 
to the receiving program to determine them. This means that the algorithm must be repeatable 
to within the accuracy of the calculation, or that the equality of the node sets must be detected, 
and the calculation carried out once only. 
If this constraint is not respected, many of the tests related to dihedral angles between faces 
will be complicated and difficult to make consistent. 
For e1, e2, n  f, n  e1, n  e2, let a(e1, e2, n) be the angle between e1 and e2 at n measured 
anticlockwise around n, as viewed from outside the face (i.e. from the side of the face for 
which ax+by+cz+d > 0). 
For e1  f1, e2  f2,  e1 = e2  e1  e2, let A(f1, f2, e1) be the dihedral angle between f1 and f2 at 
e1 measured anticlockwise around the directed-edge looking in the direction of the edge – so 
that A(f1, f2, e1) = -A(f1, f2, e2) = -A(f2, f1, e1) = A(f2, f1, e2). 

For plane fp and point p = (x,y,z), D(p, fp) = |ax+by+cz+d|. 

 ni  f, let ni’ be the point at the base of the normal from ni to fp. The points ni’ form a planar 
multi-polygon. Let On(p, f) be D(p, fp) = 0  (p is inside the closure of the planar polygon).  
 p  P, let p’ be the point at the base of the normal from p to fp. 

In(p, f) =def  On(p’, fp). (that is, the base of the normal is within the face). 
 

A shell i s s a set of faces sf and their associated directed edges se and nodes sn.  
sf   F 
se = {e: f:  e  f   f  sf} 
sn = {n: f:  n  f   f  sf} 

Note – the definition of a shell as a set of faces ensures that two identical faces cannot be 
within the same shell, but an implementation will have to ensure that f1, f2 s  f1  f2. Also 
note that by this definition a shell may not enclose 3D space. Later the concept of a “cycle 
shell” will be introduced as a fully bounded shell. 

 
An edge u (sf, n1, n2) within sf is defined as: 

u (sf, n1, n2) = {e = (m1,m2)  se  m1 = n1  m2 = n2}  
  {e = (m1,m2)  se  m1 = n2  m2 = n1}.   
su = {u: e  u, e  se} 
shell s =def sf  se  sn  su Corollary u (s, n1, n2) = u (s, n2, n1), hence u is undirected. 

Let the set of edges be U, and let u  s mean that e  u, e  s. 
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A corner v2(f, e1, e2) within face is the meeting of two directed edges e1 and e2 such that 

 n  N: (e1, e2, n  f , n  e1, n  e2) and 
 e  f, n  e  a(e1, e2, n) < a(e1, e, n) 

(Descriptively, a corner is a pair of edges meeting at a node, with no intervening edges in the 
same face. Note - if the edges do not have a node in common, a corner is not defined). 
Let V2 be the set of all corners. 
Notation: e  v2 where v2 = v2 (f, e1, e2), (v2  V2) is taken to mean e = e1 or e = e2. 
 
A fold v3 (s, f1,e1,f2) within shell s is the meeting of two faces f1 and f2 at directed edges e1 and 

e2 such that f1  s,  f2  s,  e1  f1,  e2  f2, e1  e2 and: 
  (f  s, e  f, e  e1)  A(f1,f2,e1) < A(f1,f,e1)  
  (f  s, e  f, e = e1)  A(f1,f2,e1)  A(f1,-f,e1). 
 Where -f =def  fn, -fe = {ē: e  fe}, and (-a,-b,-c,-d) – that is the same face but with the 

reversed sense. 
(Descriptively, a fold is a pair of faces that meet at an edge, with no intervening faces at the 
same edge between them). 
Let V3 be the set of all folds. 
Notation: f  v3 where v3 = v3(s,f1,e1,f2), (v3  V3) is taken to mean f = f1 or f = f2, while e  v3 

is taken to mean e = e1 or e  e1  e  f2.  

f1 

f2 f3 

f4 

fold fold 

inside inside 

 
Figure 2. An edge which is the meeting of 4 faces, 2 folds and 4 directed edges 

A C0 face f’ = f’(e) in shell s is a subset of a face f  s such that: 

e  f’  
f’p = fp  
e1  f’  n1  f’  n2  f’  (where e1 = (n1, n2) )  
n  f’  ( e  f: n  e  e  f’) 
 (Descriptively, for any edge in f’ the nodes that define it are in f’, for every node, all 

directed edges that meet at that node are in f’). 
C0(f) =def  e  f  f = f’(e) 

(Descriptively, a face is zero-connected if it has at least one directed edge, and all other 
edges/nodes are zero-connected to it) 
 

A C1 face f” = f”(e)  in shell s is a subset of a face f  s such that: 

f”p = fp 
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e1  f”  n1  f”  n2  f” (where e1 = (n1, n2) ) 
e1  f” e2  f   v2(f, e1, e2)  V2   e2  f” 
 (Descriptively, for any edge in f” the nodes that define it are in f”, and all directed 

edges that meet at that node in a corner are in f”). 
C1(f) =def  e  f  f = f”(e) 

face C0 face C1 face  
Figure 3. Faces, with weak and strong connectivity depicted 

In common parlance, a face and a C0 face would be referred to as multi-polygons, with a C1 
face being a simple polygon. 
 
A cycle shell s is a shell such that: 

u  s: for e  u {e1: e1 = e} and {e2: e2  e} are of same cardinality. 
 (Every undirected edge in the shell is composed of anti-equal pairs of directed edges). 

(A cycle shell defines a bound region of space). 

 
A C0 shell s’ = s’(f) in cycle shell s a subset of s such that 

C0(f)  f  s’  
f1  s’  n  f1  f2  s  C0(f2)  n  f2      f2  s’ 
 (For every face in s’ all C0 connected faces that meet it at a node are also in s’). 
C0(s) =def  f  s  s = s’(f) 
 

A C1 shell s” = s”(f)  in cycle shell s a subset of s such that 

C1(f)  f  s’  
f1  s”  e1  f1  f2  s  C1(f2)  e2  f2  (e1  e2)  f2  s” 
 (For every face in s” all C1 connected faces that meet it at any edge are also in s”). 
C1(s) =def  f  s  s = s”(f) 
 

A C2 shell s = s (f)  in cycle shell s a subset of s such that 

C1(f)  f  s   
f1  s   e1  f1  f2  s  C1(f2)  v3 (s, f1,e1,f2)  f2  s 
 (For every face in s  all C1 connected faces that meet it at a fold are also in s). 
C2(s) =def  f  s  s = s (f) 
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shell cycle shell C0 shell C1 shell C2 shell  
Figure 4. Shell, cycle shell, two types of weak connectivity and strong connectivity 

The cycle shell, C0 shell and C1 shell can be referred to as multi-polyhedra, while the C2 shell 
can be termed a simple polyhedron. Note that any polyhedron can, by this definition, have 
holes, which may “tunnel through” the body, or be total inclusions with no connection to the 
outer boundary. 
 
 
3. THE AXIOMS 
 
An axiom is considered to be necessary if it cannot be derived from other axioms, and some 
unacceptable consequences follow from its violation. Therefore, an attempt has been made in 
each case to generate a test case which fails a single axiom (and no other), and an explanation 
is given as to why that case is problematic.  The numbering of the axioms is the same as in the 
paper (Thompson, van Oosterom, 2012) where these axioms where presented in natural 
language. 
 
3.1 Core axioms 
These axioms are considered to be essential, because non-compliant objects would potentially 
cause malfunctioning of software that uses the data. All axioms apply to a particular shell s. 

Axiom A1 No two nodes are closer than ε apart. 

A1: n1, n2  s: (n1  n2)  D(n1, n2) >  

Many test cases are possible, but the one illustrated in Figure 5 does not violate any other 
axiom. 
There are two main unacceptable characteristics of objects which do not satisfy this: 

1. Calculations of bearings and lengths of very short lines can give spurious results. 
2. Perturbations of the object, due to rounding errors or changes of coordinate system can 

cause topological failures of a more serious nature – e.g. failures of axiom A10. 
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Figure 5 A failure of Axiom A1. The points within the circled area are about 4mm apart. (The front and 
top faces have been made transparent) 

Axiom A3 The faces incident at a node do not intersect one another except at an edge. 

n  s: f1, f2  s, n  f1, n  f2; On(p, f1), On(p, f2), p  n 
   e: e  f1  e  f2,  

Violation of this axiom potentially makes it impossible to determine “inside” and “outside” of 
an object. See the top prism of Figure 6, which is “inside out”. 
 

+ 

+ 

- 

+ 

- 

+ 

- 

 
Figure 6. There is no edge between the points marked with black dots. The faces that cross between the 
dots are planar (and have 6 edges that define them). This has a genus of 0. Faces towards the viewer have 
a +, and are shown in blue, those that face away are shown in pink, with a -  

 

 
Figure 7. A more restricted case of failure of this axiom. The rightmost face does not have an edge which 
meets the diagonal faces, but does have nodes where they meet 


