7th FIG Regional Conference

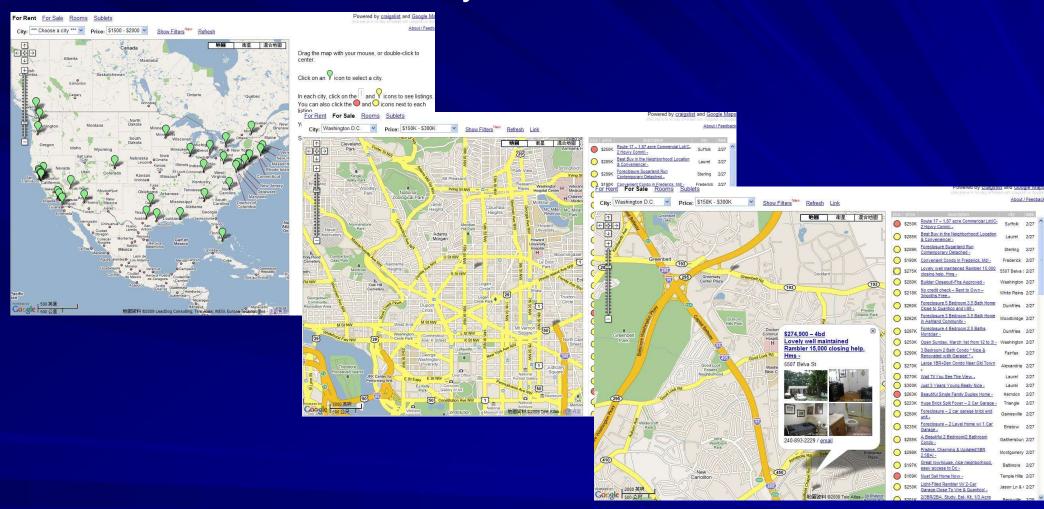
Hanoi, Vietnam, 19-22 October 2009

Web-based 3-D GIS for Location Query in Real Estate Application

Chen-Kuang CHENG Dept. of Geomatics Nat. Chen Kung Uni. Jiann-Yeou RAU, PhD Yen-Ting CHOU
Dept. of Geomatics Dept. of Land Adm.
Nat. Chen Kung Uni. Tainan City Gov.

Wei-Teng CHENG Dept. of Land Adm. Tainan City Gov.

Presented by: Mr. Chen-Kuang CHENG



Introduction

- Decision-making
 - Rational and efficient
 - Real estate market
 - Location, Location

- 3-D GIS
 - -GIS
 - Photo-realistic city model

Real estate query Only texts, pictures or videos by Seller designing Sellers-orientated system

Introduction

Modeling

System

Results

Conclusions

Goal

Two goals in this study:

1. Photo-realistic city modeling

2. Location query system in real estate application

GIS-based Photo-realistic Cyber City

- Cyber City
 - Duplicate city's functions
- Photo-realistic city model
 - vs. virtual city model
- GIS-based city model
 - vs. computer vision-based
 - Geometry and attributes
 - Spatial query and analysis

Challenges

	Bottleneck	Status
1	Large quantity of geospatial data	Geometries, Attributes, Textures, Terrain(s), Topologies
2	Low performance of Client's GPU	Rendering
3	Narrow bandwidth of the Internet	Data transmitting
4	Limited computation ability of Servers' CPU	Serving for many Clients

Introduction	Modeling	System	Results	Conclusions
Introduction	Modelling	System	Results	Conclusions

Building Modeling

- Multi-scale building models
 - 1. Block model
 - Generic texture model
 - 3. Photo-realistic economic model
 - 4. Photo-realistic detailed model

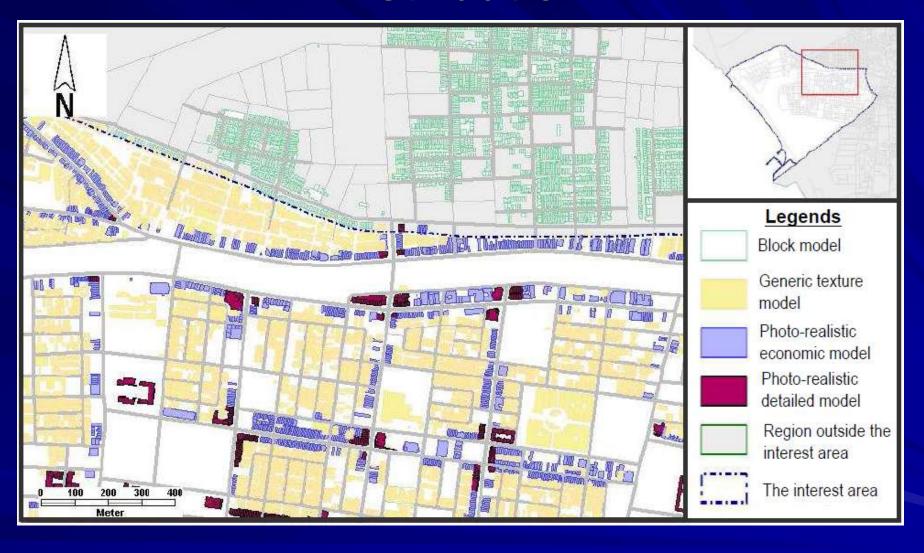
Performance of models

Model Type	el Type Characters		Performance
Block	Only nodes, no texture.	GPU	Highest
Generic texture	Texture stays resident in GPU.	GPU Highe	
Photo-realistic economic	Texture stored in Server.	GPU & bandwidth	Middle
Photo-realistic detailed	Texture stored in Server.	GPU & bandwidth	Low

Multi-scale building modeling strategy

- depend on importance

Model type	Distribution	Modeling
Block	Outside of the interest area	Assign building height
Generic texture	Not along the main roads	Extended from block model •Roof : realistic texture •Façade : generic texture
Photo-realistic economic	Along the main roads	1.Generate block model2.Assign roof type3.Create billboard.4.Photo-realistic texture mapping
Photo-realistic detailed	1.Adjacent to the junctions of the main roads. 2.Important landmark buildings.	1.Extended from economic model with detailed architecture.2.Create arcade.3.Photo-realistic texture mapping


Introduction Modeling

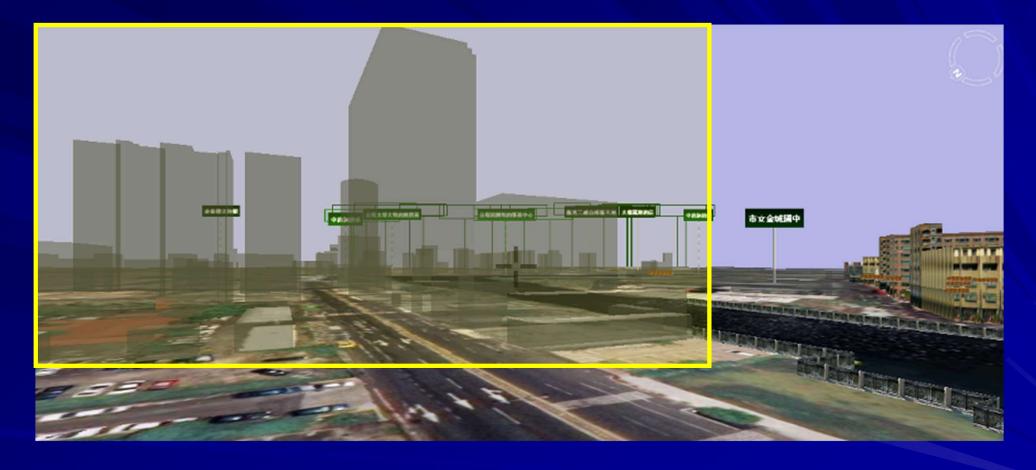
System

Results

Conclusions

Distribution

Introduction


Modeling

System

Results

Conclusions

Block model -Vertical façade and plate roof without texture

Generic texture model -Vertical façade mapped generic texture

In situ actual photo

Generic textual model

Introduction

Modeling

System

Results

Conclusions

Generic texture model -To meet the overall visual effect

(Wen-Ping Road, Anping)

Photo-realistic economic model

- Realistic roof, façade and billboard

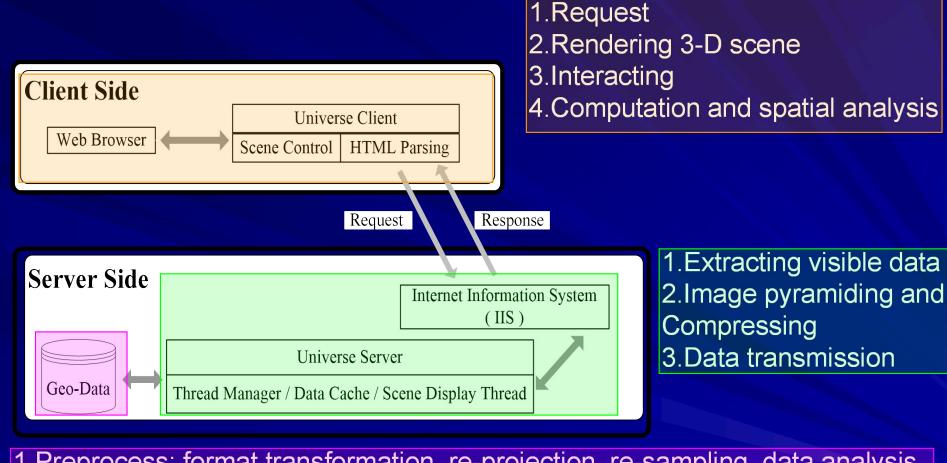
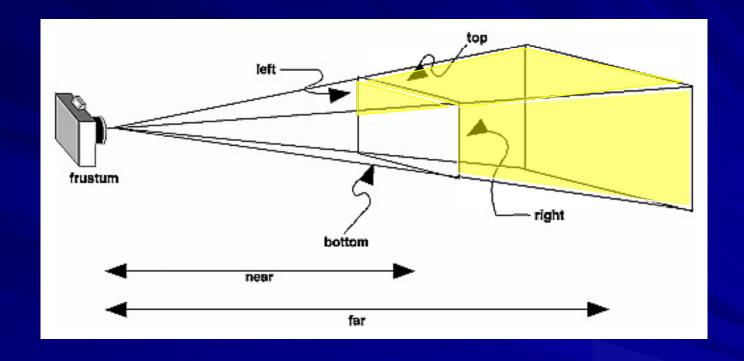
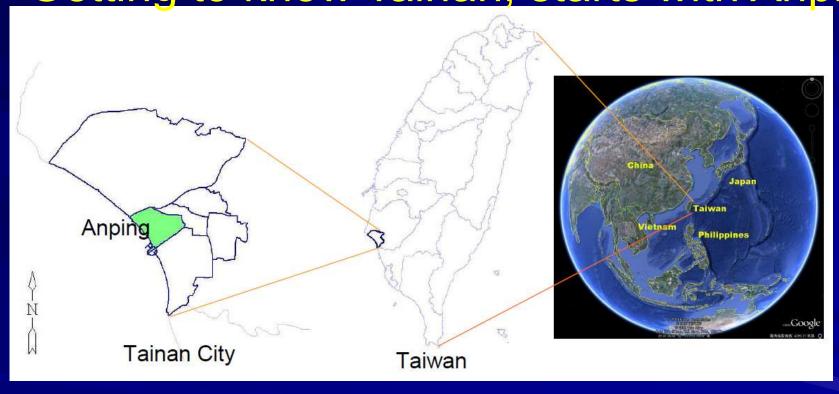

(An-Pei Road)

Photo-realistic detailed model -Detailed geometry with photo-realistic texture


(Tainan City Hall)

System

- 1. Preprocess: format transformation, re-projection, re-sampling, data analysis.
- 2.Real-time data delivering
- 3. Receiving request and provide data


View-frustum

Test area

"Getting to know Taiwan, starts with Tainan.

Getting to know Tainan, starts with Anping."

Total Area: 11 Km² Total length of the main roads: 42.6 Km

Materials (1/3) -Basic

No.	Item	Feature
1	Aerial ortho image (GSD10cm)	Grid
2	Digital elevation model (5m x 5m)	Grid
3	Route network map (1/1,000)	Line
4	Street address map (1/1,000)	Point
5	Road junction map, Anping	Point
6	Building/Architecture map (1/1,000)	Polygon
7	Topographic map (1/1,000)	Polyline

Introduction Modeling System	Results	Conclusions
------------------------------	---------	-------------

Materials (2/3) - multi-scale building models

No.	Item	Feature
8	Block model	Polygon
9	Generic texture model	Polygon
10	Photo-realistic economic model	Model
11	Photo-realistic detailed model	Model

Introduction	Modeling	System	Results	Conclusions
l l	_	_		

Materials (3/3) - The thematic maps of real estate

No.	Item	Feature
12	NIMBY maps (a total of 13 layers)	Point
13	Zoning map (two layers)	Polygon
14	Landmark map	Point

Introduction	Modeling	System	Results	Conclusions
	_	_		

Tools

GIS 3-D modeling	PilotGaea Scene Producer TM , Taiwan.
GIS Web Server	PilotGaea Universe TM ,Taiwan.

Introduction	Modeling	System	Results	Conclusions
	9	9,010		00110101010110

Location environment condition

NIMBY (Not In My Back Yard)

- 13 thematic layers
 - Dump, gas station, gas tank, grave field, the haunted house, factory, mobile base station, parking tower, taoism temple, high-voltage power line, radiation contaminated house, saltsand house, and substation.

Zoning

Main division / Sub-division

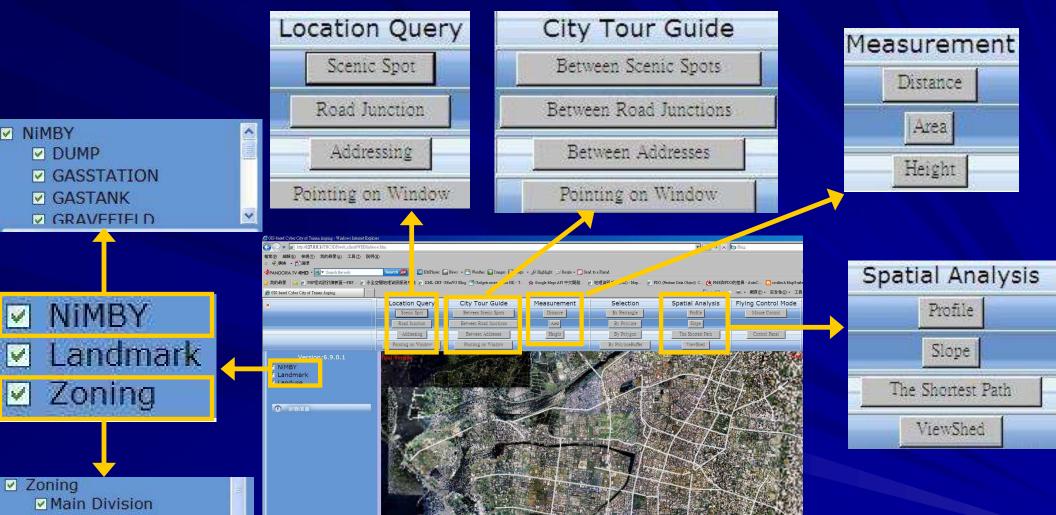
Land mark

Introduction	Modeling	System	Results	Conclusions
		J		

Location query system in real estate -not only a realistic 3-D viewer

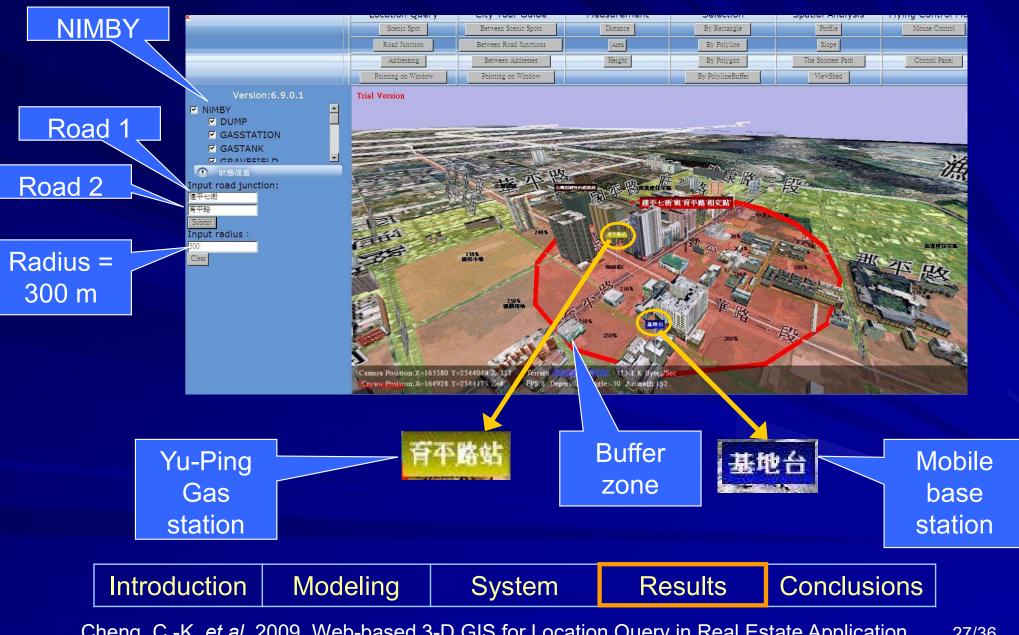
- Buffer zone analysis
 - Location query
 - Assigning radius and layers
- City tour in 3-D scene
 - Automatic browsing
 - between scenic spots
 - between road junctions
 - between addresses
 - between the defined by users on window
- Spatial measurement
 - 3-D
 - Distance
 - Area
 - Height
- Other spatial analysis
 - Profile analysis
 - Slope analysis
 - The shortest path determination
 - View-shade analysis

Reconstruction strategy (1/8)


Total (in situ): 14,500 buildings

Reconstruction:

3,500 photo-realistic building models


Location query system in real estate(2/8)

Introduction Modeling System Results Conclusions

✓ Subdivision

Location query- Road junction buffer zone (3/8)

Location query- scenic spots buffer zone (4/8)

NIMBY

Scenic spot

Radius = 100 m

Scenic spot

Buffer zone

Area measurement (5/8)

Height measurement (6/8)

Height = 51.69 m

Flooding potential (7/8) -Terrain profile analysis

The shortest path analysis(8/8)

Starting point

Conclusions - Reconstruction

- Compatible with 3-D Web GIS
- Detailed representation in geometry and texture
- High performance rendering
- Cost-effective

Conclusions -Real estate application

- 3-D photo-realistic viewer as well as query system
- A buyer-orientated system
- Displaying location information in 3-D scene
- Flooding potential
 - via profile and slope analysis
- Web 3-D GIS
 - A suitable tool for Real estate
 - Determining platform first, then modeling tool
 - Integrating multiple applications on a city model

Acknowledgement

The authors thank

- Tainan City Government
- PilotGaea Technologies Inc.
- AVirtual Geomatic Tech. Inc.

for providing the necessary materials and tools.

Introduction	Modeling	System	Results	Conclusions
--------------	----------	--------	---------	-------------

Thanks for your attention