

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

7th FIG Regional Conference

TS 1C
Advances in GNSS Positioning and Applications I

Volker Schwieger¹, Jürgen Schweitzer¹, Detlev Kosmann²

¹Institute for Applications of Geodesy to Engineering, University Stuttgart ²German Aerospace Centre, German Remote Sensing Data Centre, Wessling **Germany**

Hanoi, Vietnam, October 19th, 2009

Structure

- Motivation
- The TanDEM-X Satellite Mission
- Kinematic GPS Tracks for Evaluation
- Precise Point Positioning PPP
 - General Characteristics
 - Processing Procedure
- First Results
- Conclusions and Outlook

Motivation

- Shuttle Radar Topography Mission (SRTM) delivered first homogeneous global Digital Elevation Model (DEM)
- SRTM accuracy: 6 to 10 m (resolution 30 m)
- New DEM Mission: TanDEM-X
- Expected accuracy: 2 m relative (resolution 12 m)

Need for global evaluation method for the DEM!

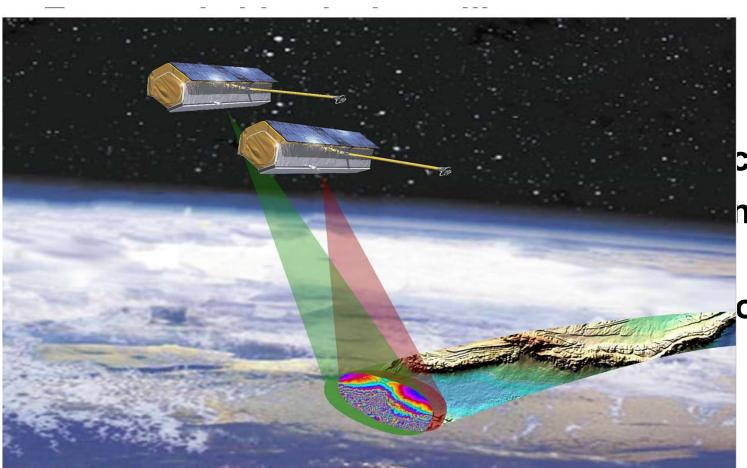
Cooperation of

German Aerospace Centre (DLR)

and FIG Commission 5

International Federation of Surveyors Commission 5 - Positioning and Measurement www.fig.net/figtree/commission5

German Remote Sensing Data Center (DFD)
http://www.dlr.de/


to find data acquisiteurs for GPS PPP

Institute for Applications of Geodesy to Engineering

TanDEM-X Satellite Mission

 TerraSAR-X add-on for Digital Elevation Measurements

coherence nes

o the earth,

TanDEM-X Digital Elevation Model

Generated by Cluster of Applied Remote Sensing, DLR:

- RawDEM generation, mosaicing of stripes and calibration,
- bundle block adjustment for conversion into final DEM
 (40 000 unknowns and 2 000 000 observations for a continent)
- provision of a height error map (HEM); to be evaluated!

Parameter	Error	Remark
absolute vertical accuracy	10 m	90% linear error
horizontal accuracy	10 m	90 % circular error
relative vertical accuracy	2 m (slope < 20%)	90% linear error
	4 m (slope > 20%)	
spatial sampling / resolution	0.4" (~12m)	independent pixels

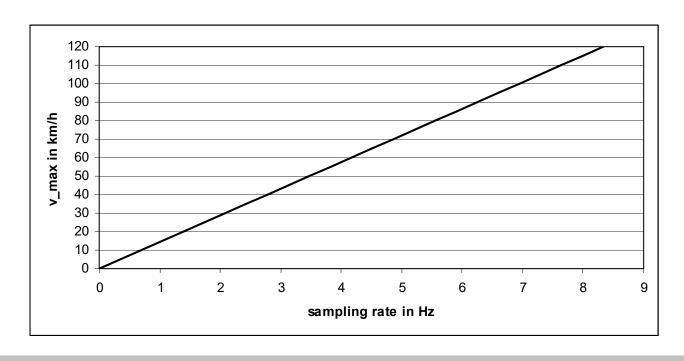
Expected DEM Accuracy

Kinematic GPS Tracks – Requirements I

Conversion to evaluation standard deviations

Accuracy	TanDEM-X specification		Requirements for reference trajectories			
	HRTI-3	Std.dev.	Std.dev. factor 3	Std.dev. factor 5	Std.dev. factor 10	
Abs. vertic.	10 m	6.10 m	2.03 m	1.22 m	0.61 m	
Rel. vertic.	2 m (slope < 20 %)	0.86 m	0.29 m	0.17 m	0.09 m	
Horizontal	10 m	4.65 m	1.55 m	0.93 m	0.47 m	

Two defined accuracy levels and different acquisition methods

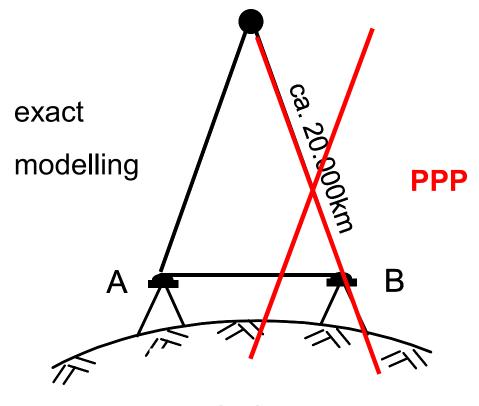

	Required Standard Deviation	Differential GPS	Precise Point Positioning
level 1	1 m (factor 5)	smoothed DGPS	Code PPP
level 2	0.3 m (factor 3)	PDGPS (phase)	Phase PPP

Kinematic GPS Tracks – Requirements II

- Resolution: 12 m x 12 m
- For reliable evaluation: al least 3 positions within one pixel
- Relation to velocity and sampling rate
- Sampling rate of 10 Hz allows up to120 km/h,
 2 Hz usable for 30 km/h maximum only

Kinematic GPS Tracks - Decision

- (P)DGPS requires second receiver or world-wide available dense CORS network, since baseline lengths should be shorter than 20 km
- PPP can be carried through without these restrictions providing lower but sufficient accuracy
- Level 1 (code data) and level 2 (phase data) is acquired at the same time, if geodetic 2-frequency receivers are used; only more accurate level 2 is evaluated
- 10 Hz Kinematic phase PPP solution is optimal


V. Schwieger, J. Schweitzer, D. Kosmann

(P)DGPS versus PPP

exact knowledge

exact modelling

Precise Point Positioning - Fundamentals

- Need for one receiver only; no reference station
- Special correction models required; especially precise orbits and clocks

		Accuracy	Latency	Sample Interval
Broadcast	Orbits	~100 cm	Real time	Daily
	Sat. clocks	~2.5ns SDev		
Ultra-Rapid	Orbits	~5cm	Real Time	15 min
(predicted half)	Sat. Clocks	1.5ns SDev		
Rapid	Orbits	2.5cm	17-41 hours	15 min
	Sat. & Stn clocks	25ps SDev		5min
Final	Orbits	2.5 cm	12 – 18 days	15 min
	Sat. & Stn clocks	~20ps SDev		Sat. 30s Stn.:5min

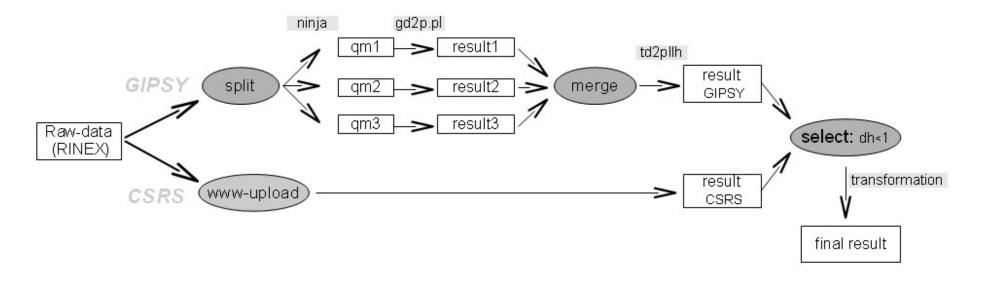
Orbits and clocks products of IGS (source: IGS 2009)

University of Stuttgar

Institute for Applications of Geodesy to Engineering

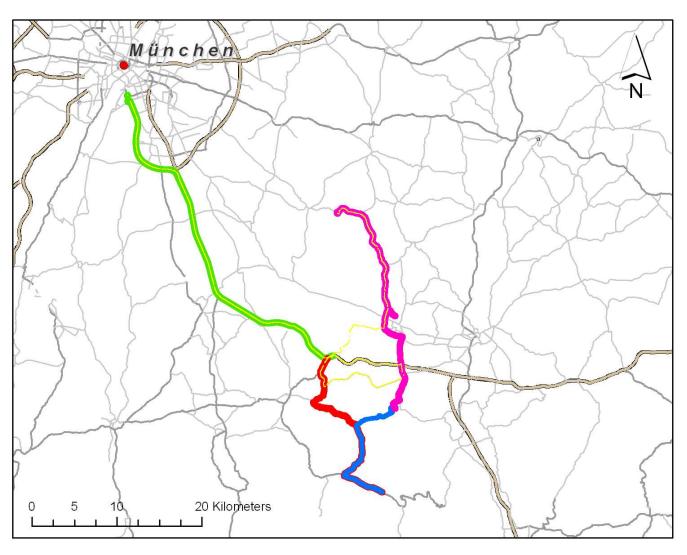
PPP - Correction Models

	Description	Correction	Impact on positioning
1. Satellite antenna	Difference between the	Correction of satellite	height: up to 10 cm
offsets	satellite center of mass and the	coordinates	position: several cm
(satellite attitude	phase center of its antenna		
effect)			
2. Phase wind-Up	Rotation of satellite antenna	Correction of carrier phase	height: several mm
(satellite attitude	around its bore axis will	observation	
effect)	change the carrier phase		
3. Solid earth tides	Deformation of the earth	Correction of station	height: several dm
(site displacement	caused by gravity of the sun	coordinates	position: several cm
effect)	and the moon		
4. Ocean Loading	Deformation of the earth	Correction of stations near	height: several cm
(site displacement	caused by ocean loading	the coasts	
effect)			
5. Earth rotation	Shift of the axis of the earth to	Correction of Station	height: several cm
parameters (ERP)	the earth's crust:	coordinates (Not	position: several cm
(site displacement	- pole position	necessary, if ITRF is used)	
effect)	- time correction dUT1		


PPP correction models (source: Heßelbarth 2009)

some cm RMS in static mode resp. sub-dm RMS in kinematic mode after approx. 30 minutes (convergence time)

Processing Procedure

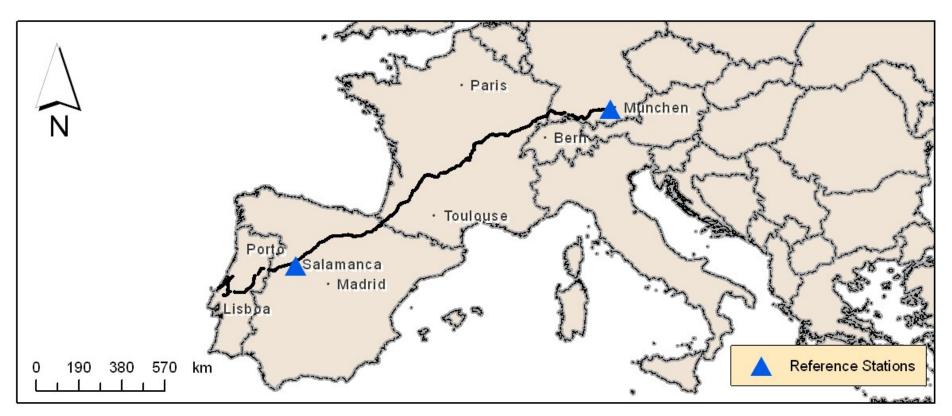

- 10 Hz RINEX files are acquired and edited
- Parallel Processing
 - GIPSY-OASIS 5.0 from JPL, USA (freeware for research and teaching)
 - CSRS-PPP Online; National Resources of Canada (via Web-Intreface)
- Averaging of positions with dh < 1 m

First Results - Test Tracks near Munich

- Gipsy 4.04 / CSRS
- Leica 2-Frequency receivers
- Availability:
- 70.7 % PDGPS
- 74.4 % PDGPS with VRS
- 90.5 % PPP
- Accuracy:
 - 0.68 m RMS

Western Europe Track

- Munich, Germany to Sao Martinho, Portugal
- 9th to 28th June 2008
- Leica GX 1230 (dual frequency), 10 Hz data rate
- 2400 km one way, dedided into 22 separated tracks per direction for processing with GIPSY


V. Schwieger, J. Schweitzer, D. Kosmann

- appr. 1.3 million positions
- PDGPS for evaluation:
 - Oberpfaffenhofen near Munich, Germany
 - Salamanca not far from Madrid, Spain

Analysis of Western Europe Track

direction	epochs	availability	RMS _{dh} [m]	length [km]	point density [1/km]
forward	772685	60 %	0.48	2343	330
backward	774775	58 %	0.48	2570	301

Analysis of Western Europe Track

Reference station	Num. of comparisions	MEAN _{ds} [m]	MEAN _{dh} [m]	RMS _{dh} [m]
OBE3	29	0.3	0.21	0.50
SALA	35	0.38	0.18	0.37

PDGPS evaluation, data rate 30 s only

Conclusions and Outlook

- Evaluation of new TanDEM-X DEM by PPP processing of world-wide kinematic GPS tracks
- Height RMS: 0.5 m does not reach the requirements, but sufficient to evaluate DEM
- Availablity: 60 % for first "real track"
- Further tracks in Europe, Asia, Africa and South-America are already acquired
- Tracks in North America, Australia, India are planned
- New status report(s) will follow on FIG Congress in Sydney, Australia, next year in April

Thank you very much for your attention! **CONTACTS**

Dr.-Ing. habil. Volker Schwieger / Dipl.-Ing. Jürgen Schweitzer

Institute for Applications of Geodesy to Engineering, University Stuttgart Geschwister-Scholl-Str. 24 D 70174 Stuttgart Germany

Phone: ++49-711-685-84064 / -84065

Fax: ++49-711-685-84044

E-mail: volker.schwieger@iagb.uni-stuttgart.de juergen.schweitzer@iagb.uni-stuttgart.de

Dipl.-Ing. Detlev Kosmann

German Remote Sensing Data Centre, German Aerospace Centre Münchnerstr. 20 82234 Wessling Germany

Phone: ++49-8153-28-1376

Fax: ++49-8153-28-1445

E-mail: detlev.kosmann@dlr.de