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Abstract

To model the impact of climate change on farmland conversion, I propose using climate extreme
variables instead of climate normals. I particularly look at the number of extreme heating days,
or days which recorded temperature reaches 90°F. I construct a 25-year climate extreme surface
using real time observations from the weather station network in California. Initial result
confirms the proposition that farmland conversion is affected by climate condition, although the
effect is minimal, but present and remains highly significant across a number of specifications.
Extreme variables are better predictors of climate change impact than using mean condition.
Farmland conversion is nonlinearly affected by climate changes: an increase in heat and
precipitation is beneficial, but excessive increase is harmful and will accelerate farmland
conversion.

! Frankie is a doctoral candidate at Department of Agriculture and Resource Economics. I am motivated by the work
on the impact of climate changes on farmland values and discussions with Professor Anthony Fisher. I would like to
thank Dan Cayan and Mary Tyree at California Climate Change Center, Scripps Institution of Oceanography, UCSD
for their permission to use the downscaled dataset. This is a preliminary work and subject to changes and additional
materials. For any suggestion please contact the author at phule2311@gmail.com.
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INTRODUCTION

There is a growing consensus that climate changes® will bring harmful consequences. The
impacts of climate changes have already occurred and will likely exacerbate in the future.
According to IPCC WGII Fourth Assessment Report (WGII-AR4), Chapter 14, “North America
has experienced substantial social, cultural, economic and ecological disruption from recent
climate related extremes, especially storms, heatwaves and wildfires” and that “North American
people, economies and ecosystems tend to be much more sensitive to extremes than to average
conditions. Incomplete understanding of the relationship between changes on the average climate
and extremes limits our ability to connect future impacts and the options for adaptation.”

There have been many researches on the possible impacts of climate changes in economic
impacts, public health, urban growth and the environment. However, there is a challenge in the
study of climate change impacts, since modeling the impacts of extreme events are more difficult
than shifting in average condition (WGII, Chapter 5). For the agriculture, there is no agreement
on how crops respond in various conditions, although it is generally understood that the
increasing frequency of extreme events may lower crop yield beyond marginal gains from longer
growing seasons and more precipitation. It is important to note that the there is still some doubt
over the impacts on agricultural production. North America agriculture, especially in mid and
high latitude region, may benefit from moderate increase in local temperature, but further
warming would be harmful (with medium to low confidence, WGII, chapter 5). But the lower
latitude regions including California would likely suffer.

In this study I will look at the impacts of climate changes, particularly the extreme events, on
farmland conversion in California. I will use comprehensive state-wide farmland tracking data
from 1984 to 2006 to map out the location of the conversion at each county, then model the
conversion on a set of climate condition and extreme events, controlling for other potential
factors such as soil or socio-economic characteristics.

’Climate change is defined as a long run trend in weather fluctuations, versus short run deviation of weather

variables from average daily values. IPCC WGII emphasizes that “detection of climate change is the process of
demonstrating that an observed change is significantly different (in statistical sense) from what can be explained by
natural variability.”



CURRENT LITERATURE ON CLIMATE CHANGE IMPACTS AND FARMLAND
CONVERSION: REVIEW AND SHORTCOMINGS

Although there have been many studies on the conversion of agriculture land to urban usage
(often known as land use-land use change or urbanization model’), very limited efforts have been
spent on studying the impacts of climate changes on land conversion.

Multiple difficulties are encountered in this issue. Firstly, climate changes occur over a long time
horizon, so to reliably study the impacts of climate changes there need very good time series
data. Secondly, there are many factors behind farmland conversion, among which most often
cited urban-driven factors such as rapid population growth, increasing income and expansion of
urban infrastructure are easy to model in many studies as the exclusive causes of urbanization.

Another reason as often perceived in public opinion is that climate changes happen gradually
rather than sudden changes, thus adaptive capability can be introduced on time to weather out the
possible impacts from global warming. This is not the case, unfortunately. Climate changes,
while defined as the long term trend in mean climate variables such as temperature and
precipitation, the increasing fluctuations in climate and the extreme events have the most serious
consequence, given short-run adjustment may not be feasible or the adaptive capability to
extreme events is “uneven and not adequate” (IPCC, WGII).

In most studies involving climate change impacts, temperature and precipitation is used as the
indicators and the most easily observed variables. Mean temperature and seasonal cycle in
temperature over relatively large spatial areas show these clearest signals of changes in the
observed climate (WGII, Chapter 1). However, this comes with a cost: no extreme events may be
used to determine the effect at local level. This would result in significant underestimation of the
effect of climate changes, since the extreme events have more significant impacts than projected
gradual changes. Climate models using mean temperature and precipitation often aggregate data
over a large spatial scale and pooled time series, thus unable to estimate the effect of localized
events such as heavy precipitation or local droughts.

This leads to questionable results in many existing models using only trend in mean variables,
which isn’t enough to capture the full variations, to predict the impacts of climate changes.
Without accounting for climate extremes, the impacts would be vastly underestimated. While
anticipated changes were often well adapted to (such as future heating, so houses were built to be

? There is some difference in the term “urbanization” in general literature from “farmland conversion” or “farmland
loss” used in this study since the former specifically refers to the conversion of agriculture land to urban usage, but
the latter not necessarily. This view is also reflected in California Department of Conservation’s Farmland
Monitoring and Management Program (FMMP) report that farmland loss is not due to urbanization alone (FMMP
2002-2004 report, page 2). FMMP classifies farmlands into 8 categories (see appendix), and in this paper I am
looking at the conversion away from prime farmland to any other usage, urban or non-urban wise. Attention is paid
to the conversion of prime farmland, the most productive land, for the very economic reason that climate changes
and agricultural production is related. Inclusion of unproductive land would divert the attention away from impacts
on agricultural production. Although climate changes may affect land conversion in many different channels,
nonagricultural conversion has more to do with urban-driven factors rather than through agricultural production.
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more heat efficient, require less cooling, or redundant capacity is built in new irrigation system
to store more water for anticipated longer droughts), but extreme events were often surprised and
thus unprepared for.

The next section will briefly review two relevant branches of literature in climate change impacts
on US agriculture and California specifically, and land use change models.

Climate Change Impacts on California Agriculture

Most reviewed studies seem to agree that future California is adversely affected by climate
changes, although for the whole US it may be different. Schlenker, Hanemann and Fisher (2005)
show that there is a significant relationship between precipitation, temperature measured at
selected months for primarily non-irrigated farmland in US and farmland values. Further work
by Schlenker et al (2006) with spatial model using a more sophisticated modeling of climate
variables such as degree days and precipitation over growing season also confirms the effect of
harmful high temperature or precipitation. That is precipitation and degree days positively
related with farm values, but too much will be harmful. Extreme temperature (degree days over
34°C) is also negative and significant. Schlenker et al (2007) applies the model to California
using water availability (access to irrigation water) also predicts damages from climate changes
from potentially large increase in growing-season temperatures and less water for irrigation.

California agricultural landscapes mean climate change impacts are further exacerbated by
multiple vulnerabilities. California agriculture is more dependent on irrigated water unlike the
rest of the country and won’t benefit from increased precipitation. Higher temperature, more
evaporation and less precipitation would mean more demand for water from agriculture and
urban uses. Future water shortage is also expected due to rapid population growth, which is
predicted to almost triple by the end of the century (Cavagnaro, Jackson, and Scow, 2006).

Among very few studies of the impacts of climate extremes on agriculture, Lobell, Torney and
Field (2009), by measuring insurance and disaster payment, concludes that excess moisture, cold
spells and heat waves are the most significant causes of damage, “major damages to crop and
livestock industries are possible with extreme events, with costs of insurance claims from
specific extreme events reaching into the hundreds of millions” (Lobell, Torney and Field, 2009).
However, this is only a descriptive summary linking payout and proportion of each type of
extreme events, not an empirical model.

In contrast, Deschenes and Greenstone (2007) predict the opposite result that US agriculture may
benefits from climate changes. In their study, they define climate changes as the difference
between observed weather realization and historical mean (1970-2000) at county level, then
model farmers’ profit as a function of weather fluctuations and find that “predicted changes in
climate will have a statistically and economically small effect on crop yields of the most
important crops”. However, treatment of climate variation in Deschenes and Greenstone study
might cause a significant underestimation of the impact. The use of climate extremes must be
properly handled so as to preserve the variation of the local events from averaging over time and
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space. Deschenes and Greenstone, by “simple average maximum and minimum temperature
from each station” and “simple average of the mean temperature across all stations within a
4 will dampen any fluctuations in the measured temperature. In the presence of high
fluctuation between observations and spatial dependence, averaging those extreme observations

county

is misleading. However, it is worth to note that they reach the same conclusion that significant
negative effect of climate changes is expected in California.

The most important result of Schlenker, Hanemann and Fisher studies is that farmland value is
adversely affected by decreasing water availability or warming condition in California: degree
day (or precipitation) is significant, but too much heat (quadratic degree days) (Schlenker et al,
2007), and extreme heat (greater than 34°C) will harm the crops, thus decrease farmland values
(Schlenker et al, 2006). This will lead to an immediate question about to which extent farmland
conversion is affected by changing climate conditions. As we assume farm owners maximize
economic profit from the value of the land, adverse weather reduces farm productivity, thus
adversely affect the value of the land on which crops are grown. Therefore, it is expected that
climate changes would depreciate farmland values and accelerate the conversion to other usage
in the presence of increasing threats of urbanization.

I attempt to answer this question using a more comprehensive set of weather and climate extreme
variables in addition to the usual treatment of control variables including all relevant soil and
socioeconomic characteristics. The paper specifically addresses to the effects of climate extremes
particularly heatwaves and heavy precipitations. This would be the first model to map farmlands
vulnerable to climate extreme events in California. This approach will extend land use change
model with an extra dimension to accommodate for the impact of climate changes. Another
advantage is the application of GIS which allows tracking every piece of farmland converted
from 1984 to 2006 in most counties in California, thus avoiding the issue of aggregation and
possible aggregation bias in the result.

Review of Land Use Change and Urbanization Models

Many researches are done on the modeling of land use/land use changes and urbanization in city
planning and transportation studies. Most common approaches are to model the equilibrium of
land supply and demand using a monocentric city model (von Thiinen) or the bid-rent approach
(Alonso), more complicated models used in city planning often integrate GIS data to provide
more real-time results.

According to Veldkamp and Fresco (1996), land use “is determined by the interaction in space
and time of biophysical factors such as soils, climate, topography, etc., and human factors like
population, technology, economic conditions” Kuminoff and Sumner (2002) restate that
economists agree that farmland conversions is driven by income growth, population growth and

* Details explained in the interpolation of climate extremes section
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farm return, but there is no consensus on how these factors interact to shift farmland out of
farming, and how important is each factor, and how to model the process.

Among most models reviewed, urban-driven factors such as population and income growth are
often modeled as the exclusive causes of land use changes, constrained by development policy.
Some models extend to include interactions with vegetations and the habitat. In the presence of
overwhelming population growth and migration toward urban areas, it is comprehensible that
climate change impacts were often ignored.

The Kuminoff and Sumner (2002) model offers the simplest approach to farmland conversion
using aggregate county level data and reports that urban-rural proximity and population growth
is the main driver, while change in farm income and housing price not significant. However,
their model uses the average converted acreage over county-wide for all types of farmland,
effectively destroying all extremely useful spatial information which could be derived from using
GIS data, as well as lacking a treatment for soil and local attributes which could be significant
factors beyond urbanization effects alone. By pooling all counties and farmland types together,
their result is based on the estimation of only 84 observations for two pooled time periods 1988-
1992 and 1992-1998. Such a small sample size raises a question over the reliability of
aggregating over huge spatial space and temporal scale while a disaggregate model of land use
changes on the same data often have to process million of cells. This model also suffers from a
serious endogeneity problem, as farm income can’t be treated as an explanatory variable for
conversion’.

Lavia, Clarke and Page (2000) have a more rigorous approach to modeling farmlands prone to
residential development by only considering variables which have influence on land values such
as farm size, slope and distance to nearest city center, distance to nearest highway.

Only the more complex models such as CURBA (California Urban and Biodiversity Analysis
Model) (Landis et al. 1998), which is the next generation of California Urban Futures (CUF)
model with an additional module on habitat simulation, can take advantage of GIS to simulate
the pattern of future land use changes under different development policies. These models use a
random utility framework to predict the probability of conversion at every cell using multinomial
logistic regression. Newburn et al (2005) utilized this framework to explore problem of vineyard
conversion and residential development in Sonoma County, California to conclude that
conversion is more likely in areas with flat slopes and warmer microclimate or growing degree
days.

> Farm income or rent is dependent on farm attributes. High quality soil can be more productive, thus rent is higher.
This is the concept of Ricardian rent. Farmland conversion and farmland income are both a function of farm and
other attributes. The analog is to estimate supply (or quantity demanded) on price, yet price at equilibrium is
endogenous because it changes on supply and demand. Customer preferences (or farm attributes) are exogenous to
both price and quantity. Treating farm income as an exogenous variable will result in biased coefficients using
ordinary least square method in Kuminoff and Sumner (2002).
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Other land use models that have been used in California such as SLEUTH (Slope, Land Use,
Exclusion, Transportation, Hillshading) (Clarke, 1997) or UPLAN (Johnston, 2002) are also
exclusively urban driven.

Several land use models have incorporated interaction with the vegetation such as MEDALUS
(Mediterranean Desertification and Land Use Project) (Openshaw and Turner, 2000) and CLUE
(Conversion of Land Use and Its Effects) (Veldkamp and Fresco, 1996) by including climate
variables to model the biophysical process. However, they stop at using mean temperature and
precipitation only.

More recent work by Howitt, Azuana and MacEwan (2009) specifically links potential
agricultural yields to land use using SWAP model (Statewide Agricultural Production Model), a
mathematical optimization model, to conclude that "while the effect of climate change is
manifest through yield changes, after economic adaptation, the results on irrigated crop
production are predominately shown in economic terms and changes in aggregate land and water
use." Their model predicts acreage loss from 16 to 24 percent of irrigated land in various regions,
while revenues would fall from 9 to 16 percent due to partial offsets from price and crop
changes.

No existing land use model has used climate extremes, which have more substantial impacts and
more detectable than using climate normals. Areas vulnerable to adverse weathers are likely to
get affected first, and with the increasing trend and severity of adverse weather, we probably see
an acceleration of farmland conversion as separately from urban driving factors. Ignoring climate
factors would likely result in overestimating the effects of urban-driven factors in place where
there are other potential harmful factors, climate changes or otherwise, that negatively affect
farm production. As lands expectedly become less arable in the future, the increasing pressure of
population and income may drive more farmland out of less profitable agriculture production.

FARMLAND CONVERSION STATUS IN CALIFORNIA

The conversion of agricultural lands poses a serious threat to California agriculture. California’s
Department of Conservation reported a consistent trend of increasing urbanization and
movement of agriculture land to other uses in most counties in California during the past two
decades. According to the last report, during the period 2002-2004 there was a loss of 170,982
acres of farmland of all types, among which the highest quality farmland (prime farmland)
accounts for 46% of the total. Translating to acreage, prime farmland loss in 2002-2004 period is
78,575 acres, a big surge from 47,172 acres in 2000-2002. Figure 1 shows that the trend of prime
farmland conversion is particularly damaging in the past decade with almost half of total
conversion in almost periods except 2000-2002. Total prime farmland loss during the period of



study is 461,272 acres, approximately 9 percent of total prime farmland stock available by the
end of 2004 (5,076,207 acres).

Figure 1
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Source: Author calculates from FMMP reports. Other farmland conversion includes all nonprime
farmland conversions. Farmland classification is in the appendix.

However, urbanization is not the only cause of conversion, as nearly 40% of the conversions out
of agriculture land were to other uses. There are also other conversions from productive farmland
to idling land, non-irrigated cropping, wildlife areas, low density residential uses, mining, or
confined animal agriculture facilities, which need explanations more than just conversion to
urban uses. This shows that the dynamics of farmland conversion in California is more complex
than urbanization alone (FMMP 2002-2004 report). As a consequence, any study modeling
farmland conversion must consider factors beyond urban driving forces.



MODELING THE IMPACT OF CLIMATE CHANGES ON FARMLAND
CONVERSION

The aim of this paper is to model the impact of climate changes on farmland conversion, paying
attention particularly to extreme events such as high temperature, frosts and heavy precipitation,
while controlling for other factors such as urban influence and soil characteristics.

It is assumed that farmland owners maximize profit, either as a net discounted rent from future
farming (or the Ricardian rent), or sell the land and convert it to another usage. This is the
traditional approach to urbanization. Facing possible adverse climate impacts which would
reduce future farming profit, more farmland conversion is expected. There are a couple of notes
here. Firstly, I assume that the conversion is purely based on economic decision. Farmlands that
have been planned for other usage will be excluded from the data. Unlike urbanization model
which requires the land to be converted to urban usage, in this model farmland can be converted
to urban or other usage, or even left idling.

Secondly, is there any market mechanism which may benefit farm owners from harmful climate
extreme events? If farm supply was disrupted by local climate events, but not replenished from
other places, then price was expected to increase. If price increases by too much it may offset the
losses of damaged crops and farm owners may actually benefit. In this case probably we can see
a conversion from idle lands or other lands back to prime farmland! However, it is reasonable to
assume such events, if had, is not strong enough to interfere with the conversion trend since short
term gain would not outweigh expected future cost of maintaining the farm. Similarly, if demand
for some crops increases, we may see idle land move back to cultivated lands. (FMMP 2002-
2004 period reports irrigated acreage gains in Antelope Valley of Los Angeles County due to
strong market demand of baby carrots and potatoes, although two thirds of those lands didn’t
meet prime farmland criteria). That will partly offset the effects of climate changes on
conversion. The easiest way to deal with this is to assume price constant, thus no external
market intervention. Existing study (Deschenes and Greenstone, 2007) also holds price constant.
Including a time fixed effects may also solve this problem.

Thirdly, there is a legislative issue which may limit the option of farm owners from conversion.
California initiated Williamson Act from 1965 to protect the state’s farmland from conversion by
giving financial incentive to farm owners. Farm owners will get property tax credit by entering a
10 year rolling contract with the government. Up to a half of the state’s farmland is under
protection of the act now. Only farms of 100 acres up are eligible. Farm owners must pay
cancellation fee if want to drop out of the program before contract is due. Thus, a downward bias
of the impacts of climate events will be expected.

The next section will describe the data sources, followed by the methodology and estimation
strategy.



DATA SOURCE AND DATA PREPARATION

Much data used in this paper come from public GIS database, which often need extensive
processing for analytical modeling. There are several occasions in which the use of GIS
operations is explained in details to provide insight of the raw data and the data format used in
the econometric modeling.

Data Sources and Description
Farmland data

California Department of Conservation initiated the Farmland Mapping and Monitoring Program
(FMMP) in response to “a critical need for assessing the location, quality, and quantity of
agricultural lands and conversion of these lands over time. FMMP is a nonregulatory program
and provides a consistent and impartial analysis of agricultural land use and land use changes
throughout California” (California Department of Conservation).

The first biennial report on farmland landscape was available in 1984. Since then there have been
10 published reports and 12 GIS database made available to the public with the latest report in
2006 (by the time of this writing, the 2006 report is classified as unofficial). Over time, there are
more counties and land area mapped and published, up from 38 counties in 1984 report to 46
counties in 2006. The database now maps nearly 96% of state’s privately held agricultural and
urban land use covering 47.9 million acres in 49 counties.

There are 8 types of important land use in FMMP classification: prime farmland, farmland of
statewide importance, unique farmland, farmland of local importance, grazing land, urban and
built-up land, other land and water (farmland list in appendix). FMMP team uses remote sensing
satellite images, aerial orthophotos and soil survey data from the US Department of Agriculture
in the classification process and verifies by ground survey, as well as inputs from other parties.

Climate data

Mean weather variables from the PRISM dataset (Parameter-elevation Regressions on
Independent Slopes Model of the Oregon State University PRISM group) are used. I am using
30-year average max, min and mean temperature, precipitation for the period 1971-2000. PRISM
data is available in grid cells at a resolution of 30 arcsecond (roughly 800mx800m). Within each
cell it is assumed that weather variables are homogenous. Figure 2 in the appendix shows the
pattern of PRISM climate normal 30-year max and min temperature.
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The reason we need to consider both max and min temperature separately, according to Lobell et
al. (2000), is that “because they are often not correlated from year to year with each other,
particularly in winter and often one but not the other is highly correlated with yields. Combining
the two into average temperature would therefore degrade model performance. Also square term
is included to capture non linear relationships, as crops often possess an optimal temperature
where yields are maximized relative to both cooler and warmer temperature”.

Historical weather records

Another set of weather variables are real time observations at the National Climatic Data Center
(NCDC) weather station networks. I only extract observations from those stations having reports
for any the studied period from 1980 to 2006. There are data on daily maximum and minimum
temperature and precipitation. There were 628 stations listed as active during at least some or the
full period from 1980 to 2006. The station positions are matched onto state plane by longitude
and latitude address, from which weather data on the whole state surface can be obtained by
interpolation method. Figure 3 shows the locations of the station network on the state plane.

Figure 3. Location of the weather stations on state plane

Distribution of Metecrological Stations on State Plane




Soil characteristics

Since the classification of the farmland was done on USDA’s SSURGO soil survey database,
this paper will use the same dataset to make it consistent with the classification®. Following
literature, I will also use a set of variables representative of farmland quality like average water
capacity, permeability, erodibility, percent clay, irrigation class and depth to water table.
Complete explanation of the soil characteristics is included in the appendix. Soil characteristics
are assumed unchanged overtime.

Demographic and socioeconomic data

To control for urban pressure which drives the conversion from the demand side, population
density and median income will be used. These come from two US censuses in 1990 and 2000.
The urban influence is weighted by distance from urban areas to the farm location. Since there is
no hard edge between urban-rural areas, many studies use the distance by centroid between the
farm location and the nearest census tract or the central business district as in mono-centric urban
growth model. US census database provides a useful urban area designation’, which could be
more informative than using census tract.

Data Preparation

Since the farmland polygon isn’t parceled, and most often come with irregular shapes of various
size (Figure 4 and 5), as in any spatial modeling of conversion, we need a standardized
measurement unit.

To do this, I create a grid layer of .25x.25 arcmin (roughly 4x4 km) on the state plane to be used
as the geo-referencing layer. As in any spatial modeling, the choice of cell size is arbitrary, thus a
valid result should remain using different cell sizes. Validation using different cell size is
tempted. However, the choice of size is induced by computing resource and at the same time
preserves some local attributes. Too coarse resolution would facilitate computation at a loss of
local information, thus prone to aggregation bias. This is particularly true when we have very
irregularly shaped, elongated farm polygons spreading over a wide area, thus different parts may
have exposed to very different condition (urban stress, soil, weather etc).

% Soil Survey Geographic Database from the U.S. Department of Agriculture, Natural Resources Conservation
Service. SSURGO version 2.1 (2006) is used.

7 Urban areas are designated as places where “Core census block groups or blocks that have a population density of
at least 1,000 people per square mile (386 per square kilometer) and surrounding census blocks that have an overall
density of at least 500 people per square mile (193 per square kilometer).” (http://en.wikipedia.org/wiki/Urban_area)
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Then I use this layer to join and clip with other data layers to extract all interested variables. The
products will be layers with each cell complete of spatial reference and attributes.

Figure 4 : Location of Prime Farmlands Figure 5 : Extracting Converted Land Demo
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Extracting converted farmland polygons from state farmland layers
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Each type of farmland is classified as farm polygon in FMMP data. To extract the converted area
during each biennial report, firstly each layer was successively overlaid onto another to detect
where a conversion had taken place between two report periods. The dependent variable will be
derived as the amount of prime farmland converted between two biennial reports in each cell
(Figure 5). The edge length (perimeter) will be calculated for each cell, since more fragmented or
close proximity to the edge farmlands are prone to conversion than contiguous farms.

According to FMMP report, the minimum mapping unit used in FMMP data is 10 acres.
Farmland of smaller size will be attached to the next neighbor land. The minimum unit of
13



measurement within GIS database is 0.3 acre. This has an implication on the number of the
converted farmlands found. Due to mapping inconsistency, or human errors, there are occasions
which the polygons or lines do not perfectly line up. The result is that there are some areas which
didn’t experience a conversion but incorrectly determined, and some converted areas appear very
small compared to the minimum unit of measurement of 0.3 acre. So these areas resulting from
mapping errors will be excluded from our analysis.

Some extra caution is taken with regard to farmland conversion due to administrative issues. Due
to the reclassification of the farmland in some areas, the farmland loss due to being reclassified
won’t be used in the analysis. Farmland loss due to government plans will be excluded too.
Report on big conversions was often available at county level and published by FMMP, and
those plots would be removed from the data.

Deriving climate extreme surface — choice of interpolation methods

This section will explain the method behind weather interpolation from weather station dataset to
the whole state plane. This is a crucial part of predicting the effects of climate changes and
weather extremes, especially because the nature of extreme events is rare, thus generalization
and interpolation must be very cautious. I focus on the use of extreme temperature, i.e.
temperature supposed to be damaging to crops. According to agronomic literature, this threshold
is set at 90°F for maximum temperature. The number of days with maximum temperature
recorded above 90°F at every location were interpolated from a series of nearby stations, thus
avoid the issue of aggregating and averaging over space.

Since the records of extreme events are set of point estimates at the weather station locations, to
estimate the impacts on a farm location far away from the observatories, we must interpolate the
value of extremes to different places. Several interpolation methods are often used such as
inverse distance weighting (IDW), nearest neighbor, spline and kriging. The results of Schenker,
Hanemann and Fisher (2006) and Deschenes and Greenstone (2007) show how different
interpolation methods may lead to very different, sometime even contradictory, results.
Pointedly, Deschenes and Greenstone restrict climate variation to average observations from
weather stations in the same county. This has a drawback that using mean temperature or
precipitation often results in underestimating the impact from extremes. I attempt to use several
interpolation methods including IDW and kriging. IDW assumes that the effect fall by linear
function of the distance while kriging can accommodate for spatial dependence in the
observations, in which nearby stations tend to report similar values than distant ones. Kriging is a
geostatistical method, unlike deterministic approaches such as IDW.

The potential problem with deterministic approach is that interpolated value is purely a function
of distance between locations. Kriging takes into account the spatial autocorrelation between

observations. The difference is evident when the observations are not randomly distributed. By
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examining Figure 6 we can see how these stations with high and low records cluster at different
places: high number of days above 90° F is concentrated in Southern California, the desert and
central valley, in opposite to coastal and Northern areas with very few records. Moran test for
spatial dependence rejects the spatial independence of these observations. Averaging the records
over space will result in underestimating impact of the high records and overestimating the low
records. A sample of interpolated extreme heating surface is presented in figure 7 in the
appendix.

Figure 6: Distribution of Number of Days above 90°F (Real-time Observations) in 2000
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DATA SUMMARY

For the initial result has been completed to date, Table 1 summarizes 4220 cells covering all
documented prime farmland acreage from 2000 to 2006.

Table 1: Some Descriptive Statistics
(For PRISM data, temperature is in hundredths of a degree Celsius,
precipitation in hundredths of a millimeter; interpolated precipitation is in inches)

Description Source Mean Std. Dev. Min Max
Climate Data

30-year Average Max PRISM 2372.78 287.4649 1351 3165
Temperature

30-year Average Min PRISM 854.3367 254.5065 -196 1482
Temperature

30-year Mean Average of max 1613.558 260.339 676.5 2293.5
Temperature and min temp.

30-year Mean PRISM 41213.75 22925.66 7108 186940
Precipitation

25-year Average Number  Interpolated from  70.04261 32.61343 4457164 191.5524
of Days Above 90F NCDC

(IDW) observations

25-year Average Number  Interpolated 114.0945 24.94456 52.73724 190.1058
of Days Above 90F

(Kriging)

25-year Average Interpolated 14.00324 6.89008 1.735603 49.17206
Precipitation (IDW)

25-year Average Interpolated 14.38143 6.835474 243149 50.25348
Precipitation (Kriging)

Soil Data

Average Water Capacity SSURGO 1314087 0431373 0 4652072
(AWC)

Saturated Hydraulic SSURGO 16.62466 14.84382 1.21 96.6791
Conductivity (Ksat)

Percent Clay SSURGO 23.5575 8.979848 .7846025 51.3
K-factor, whole soil SSURGO 2906025 .0878168 0 49
Depth to Water Table SSURGO 190.2441 28.92158 0 201.0012
Irrigation Class SSURGO 2.263655 .848156 1 7
Socio-economic

Median Family Income, US Census 2000,  45340.37 10672.72 27331.87 90768
Weighted by inverse SF3, entry

distance P077001

(US dollar, 1999)

Population Density, US Census 2000,  3631.014 1186.466 555.3243 31956.36
Weighted by inverse SF3, entry

distance P003001

(people per square km)

There are some anomalies worth mentioning in the values of soil characteristics regarding

average water capacity, K-factor and depth to water table, i.e. the reported values are zeros. They

aren’t necessarily missing or incorrect values, strictly speaking. Since the values are either

weighted average or dominant condition at each cell level, it is possible to get such values.

However, the impact of such anomaly is minimal. There are only 30 cells with reported zero
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value of AWC, 7 cells of depth to water table and 37 cells of K-factor less than .02 (the
minimum value reported by SSURGO), representing less than 1% total number of cells. Models
tested with and without such cells didn’t reveal any significant change at all. The largest missing
cells come from irrigation class, which only have values for 3064 cells. However, dropping
irrigation class also doesn’t change the result, especially with regard to the significance of the
climate indicators.

To see how separating maximum and minimum temperature from using mean only is significant,
Figure 8 shows the distribution of these three climate normals at 4220 cells. We can see that max
and min temperature keep the variation much better than the distribution of mean. This would
later prove to be important in models using max and min temperature versus model using mean
temperature alone.

Figure 8
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It’s also tempted to see how using extreme conditions, i.e. number of days above 90°F will better
keep the variation than separating max and min temperature, Table 2 shows the correlation
coefficients of these variables. Although the correlation is high, it is not as high as the correlation
between max and min temperature. Figure 1 already shows the spatial variation of these two
indices on the state plane. It’s easy to see that max and min temperature tends to be correlated
with each another, i.e. Southern part is, on average, warmer than other areas. Yet, extreme
heating days are quite different from average condition, evidently when we look at the
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correlation between number of extreme days with max and min temperature, .83 and .65, while
the correlation between average max and min temperature is even higher at .85. Some areas may
be subject to more fluctuation in temperature, i.e. both more low and high temperature, thus even
with a high number of heating days, using annual max and min temperature would just amount to
averaging out these fluctuations, therefore underestimating the effect of the extremes.

Table 2: Correlation between Climate Indicators

Max Temperature, Min Temperature, Mean Temperature, Number of Days Number of Days
30-year Average 30-year Average 30-year Average above 90F, IDW above 90F, Kriging

Max Temperature, 1

30-year Average

Min Temperature, .8454 1

30-year Average

Mean Temperature, 9653 9555 1

30-year Average

Number of Days .8288 6474 7740 1

above 90F, IDW

Number of Days 8134 .6901 7864 9294 1

above 90F, Kriging

In the analytical part, I show results using several combinations of different climate indicators,
using mean temperature and precipitation, separating out max and min temperature from mean,
using the number of extreme heating days and finally validate the result with Schlenker et al
(2006) data using degree days measure.

SPATIAL REGRESSION MODEL

I adopt a reduced-form approach® to land use conversion as in Chomitz and Gray (1996), which
models the conversion at each cell as a function of biophysical and socioeconomic
characteristics:

Vi :ﬁo +Xiﬂ+Zi7/+gi

for each cell 1

¥ The mechanism of conversion is through allocating the land to highest-value usage, either as farmland rent or
converting to other usage. Yet, farmland rent is endogenous as a function of farm attributes. But we can formulate a
model of farm rent on attributes, thus conversion function thereof. The first part is similar Mendelsohn et al (1994)
approach to estimating farm value by hedonic regression.
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y is the amount of prime farmland converted in each cell over the two report periods. X is vector
of weather means and climate extreme variables. Z is vector of control variables including soil
and socio-economic characteristics.

To control for the nonlinear effects of climate condition, I am using the squared maximum
temperature, squared precipitation and squared maximum number of days above 90° F. I am
going to use three different combinations of climate indicators: by using mean temperature and
precipitation only, separating max and min temperature from mean, then my favorite
specification using number of days above 90° F.

There is an issue of spatial dependency between observations, as said in the first law of
geography that near things are more related than distant units, spatial autocorrelation need to be
accounted for. For instance, farm owners may be affected by his neighbor’s conversion decision,
or the process of clipping and extracting converted areas may have inadvertently created nearby
observations which share attributes.

There are two approaches to spatial dependency problem, either by using a spatial autoregressive
(SAR) or spatial errors modeling (SEM).

Spatial autoregressive model (SAR):

Y =oWY+X e,
Spatial errors model (SEM):

V=Xt

& =pWe+y,

where W is the spatial weighing matrix, 6 and p is spatial autocorrelation coefficient. The

presence of spatial dependence violates the condition that the error terms are uncorrelated, thus
ordinary least square regression on spatial data is still unbiased, but inefficient in SEM model. In
case of SAR model, it is both biased and inconsistent (Elhorst, 2003).

In this paper I will show models estimated with robust standard errors, model with county fixed
effects to control for county difference, then models with spatial errors using popular treatment
to cross-sectional spatial dependence such as Conley’s GMM approach (1999) and Elhorst’s
MLE estimator (2003). Test for spatial autocorrelation on robust standard errors shows that there
is significant spatial dependence in the residuals, necessitating the spatial approach. I will use
two weighting schemes to allow for the spatial spillover effects to extend from 0.1 degree in
distance (roughly 10km) to 0.5 degree (~50 km). Extending the influence distance can correct for
more spatial dependence, but at a cost, as spatial standard errors will be significantly higher, thus
reducing the significance of the interested variables.
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Panel data approach is possible, but substantially more data needed, which isn’t possible at this
time. The initial result presented here comes from cross sectional data for 2002-2006 conversion
period. The results here are also confirmed using MLE estimator’.

EMPIRICAL RESULTS

Results on 2002-2006 conversion are reported in Table 3, 4 and 5 for three different
combinations of climate variables: max and min temperature, extreme conditions and mean
temperature. Robust standard errors without spatial dependence are shown in column 1. Column
2 and 3 are models with spatial standard errors using inverse distance weighting schemes at two
different cutoff ranges. Column 4 is model with robust standard errors and county fixed effects
included. Dependent variable is the difference in prime farmland acreage in each cell from 2004-
2006 and 2000-2002 reports, so effectively it is the negative amount of converted areas. This
arrangement is deliberated to generate an inverted U-shaped conversion function much as
agricultural production function in agronomics.

The first column in a three table shows all climate variables are highly significant and with the
expected sign: 30-year mean maximum temperature and minimum temperature have positive
effects on the negative farmland loss, or an increase in these variables will counter farmland loss.
Yet, squared maximum temperature is negative, or it will accelerate farmland loss. The same
holds for precipitation. This result is exactly as expected for the impact of climate on farm
production: an increase in average temperature means prolonged growing seasons, thus farm
values and helps keep farm in production. Look at Table 1 we see the average max and min
temperature is at 23.7 and 8.5 degree Celsius, well below threshold for which crops may be
harmed. The squared terms both have negative sign, showing that excessive increase in
temperature and precipitation is harmful and will accelerate conversion.

Table 5 reports the same conclusion as using max and min temperature separately: an increase in
mean condition can help reduce farm conversion, yet to a certain extent the negative coefficient
of the squared term will shadow the benefit of change in mean condition and harmful feedback
will set in. What makes Table 3 and Table 5 different is the magnitude of the coefficients:
separating max and min temperature both impacts are higher than averaging: for max
temperature 2202, 30% higher compared to 1566 using mean temperature, and for squared term
-0.50 vs. -0.48. Coefficients using the number of days above 90°F aren’t directly comparable
with temperature.

? Data and program code are available upon request
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Result using the number of days above 90°F (Table 4) is interesting: an increase in the number of
days above 90°F will be beneficial, but it is also harmful if increases by too much.

With regard to the soil coefficients, higher water capacity and higher permeability (K-saturation)
are both positive as expected: farm with higher AWC can better support crop growth, thus farm
values and less conversion. Higher permeability means that it is less prone to heavy precipitation
events. Clay is positive and significant. Higher value of clay in soil content means more
capability to keep water, in opposite to having more sand. Irrigation capability class is the
suitability of farmland for most kinds of field crops. Higher values indicate the greater is the
limitations and narrower choices for practical usage, thus less convertibility. So a positive and
highly significant coefficient for irrigation class is well predicted. Two soil variables with
negative estimates are K-factor and depth to water table. K-factor indicates the susceptibility of a
soil to sheet and rill erosion by water, higher value of K-factor means more erodible soils, other
things equal. So the results for K-factor and water table depth are both very intuitive. However,
depth to water table variable isn’t significant in all models.

For other control variables, the perimeter is negative and significant in all models as expected.
This comes from the fact that conversion often took place near the border rather than deep inside
farm polygons. Further, more fragmented or close proximity to the edge is likely more
influenced by urban factors, planning or other factors than contiguous farms.

Median family income is highly significant and also intuitive. Higher income indicates more
pressure from urban demand, either through higher demand for land or implicitly driving up land
price, thus inducing conversion. Population density coefficient is unexpectedly positive, however
insignificant in all models.

Column 2 and 3 are models with spatial correlation in error terms. Moran’s test of spatial
correlation in the error terms report a value of 14.65, indicating the need to correct for spatial
autocorrelation. Spatial standard errors are higher than those from least squared estimation, thus
many explanatory will become less or insignificant. Increasing cutoff ranges will allow for the
error terms to be more correlated with one another, thus increasing spatial errors’ standard
deviation. Most variables remain significant with cutoff range of .1 degree. At cutoff range of .5
degree, only maximum temperature and its squared term is significant. Perhaps the most
interesting finding is that the number of days above 90°F remains significant, while using mean
temperature isn’t after all.

Column 4 is model with county fixed effects. There are reasons to think that county difference
may be an input to permitting conversion such as difference in policy, existing farmland supply,
or any unobserved county difference. The result is still very encouraging that max temperature
and max temperature squared are significant with expected sign, same as the squared number of
extreme heating days. Using mean temperature won’t be able to detect any effect of temperature
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changes on conversion. Soil and other socio-economic variables are still significant as expected
with the exception of precipitation and K-factor now insignificant in all models.

To validate this result, instead of using max temperature or extreme heating days, I use a more
agrarian approach to climate, degree days, to see how the conversion may be affected. Degree
days is defined as the sum of degrees above a lower baseline and below an upper threshold
during the growing season (Schlenker et al, 2006). With the lower bound set at 8°C and upper
bound at 32°C, a day can contribute maximum up to 24 degree days unit. Crop growth needs
certain amount of degree days, yet too much degree days may mean too warm condition and
harmful effects expected. For temperature above 34°C, the effect is always harmful. Harmful
degree days is the total number of degrees for any day which maximum temperature passed 34°C
threshold.

Table 6
Precipitation, Degree Days and Harmful Degree Days in California
County Average, 50 Counties

Variable Mean Std. Dev. Min Max
Precipitation (cm) 68.0088 4.8512 62.1884 87.1772
Degree Days (8-32°C) 2738.44 170.45 2421.77 3072.05
Harmful Degree Days 2.3594 2863 1.8008 2.9927
(34°C)

Source: Schlenker et al (2006)°

I replace my proposed climate variables with Schlenker et al (2006) data on precipitation,
squared precipitation, degree days, squared degree days and the square root of harmful degree
days, at every cell for each county using county fips code. Table 6 is a summary of Schlenker et
al (2006) data, in county average over 50 counties in California. Validation result is shown in
Table 7. It’s interesting that the result agrees perfectly with other models, and remains significant
across all three specification checks. Since normal degree days has been shown to be positively
related to farmland value, so it will help keep farm from converting. Yet too much degree days is
bad and harmful degree days (34°C) too. Precipitation follows the same pattern. Note that the
sign of population density is counterintuitive in the first two columns (robust standard errors and
cutoff range of .1 degree), but no longer an issue at the cutoff range of .5 degree. At cutoff range
of .5 degree, the result still holds for degree days and squared degree days. One reason to suspect
harmful degree days isn’t significant is that there are very few observations and little variation of
this variable, as acknowledged by Schlenker et al (2006).

' Available at http://www.columbia.edu/~ws2162/agClimateChange.html
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These results confirm the proposition that maximum temperature or extreme heating days will
accelerate farmland conversion. Although the models only explain a fraction of conversion
pattern (R square is low, about 6% for models without fixed effects or roughly 25% for models
with fixed effects), the most important result is that the effect is present and significant.

CONCLUSION

This paper presents a new approach to study the impact of climate changes on farmland
conversion using climate extreme events instead of mean condition. This approach has been
proved to better predict the impact of climate changes, especially when considering the impact of
heating condition: using the number of days above 90° F or separating maximum and minimum
temperature from average condition are both better predictors of the negative impact of excessive
heating on farmland conversion.

A conclusion specific to California agriculture is that there may be benefit, thus less farmland
conversion, expected from mild climate changes. But excessive increase will be definitely
harmful and drive more conversion away from farm production. This conclusion is also
supported by a number of literatures about climate impact in California.

This result is also significant in the sense that shifting the attention to the distribution of the tail,
i.e. extreme events, can better estimate climate impact than using average condition. However,
there are considerable difficulty in obtaining and analyzing the impact of extremes than changes
in predictable mean values.

There are several ways to improve the predictor of impacts to be considered in future study.
Firstly, using temperature recorded during growing season only may be more relevant. This is
not a problem for California, as growing season (from April to September) comes with most of
the observed extreme heating days. However, application to other locations needs to take this
into account. Secondly, the number of continuous heating days maybe more harmful than
isolated events. Lateral damage (without considering the timing of extreme heating days) can
still be mitigated in short term such as pumping more water, but not a solution if climate changes
cause severe heating over a prolonged period.
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APPENDIX

FMMP Farmland Classification

Prime Farmland has the best combination of physical and chemical features able to sustain
long-term agricultural production. This land has the soil quality, growing season, and moisture
supply needed to produce sustained high yields. Land must have been used for irrigated
agricultural production at some time during the four years prior to the mapping date.

Farmland of Statewide Importance is similar to Prime Farmland but with minor shortcomings,
such as greater slopes or less ability to store soil moisture. Land must have been used for
irrigated agricultural production at some time during the four years prior to the mapping date.

Unique Farmland consists of lesser quality soils used for the production of the state's leading
agricultural crops. This land is usually irrigated, but may include non irrigated orchards or
vineyards as found in some climatic zones in California. Land must have been cropped at some
time during the four years prior to the mapping date.

Farmland of Local Importance is land of importance to the local agricultural economy as
determined by each county's board of supervisors and a local advisory committee.

Grazing Land is land on which the existing vegetation is suited to the grazing of livestock. This
category was developed in cooperation with the California Cattlemen's Association, University
of California Cooperative Extension, and other groups interested in the extent of grazing
activities.
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Urban and Built-up Land is occupied by structures with a building density of at least 1 unit to
1.5 acres, or approximately 6 structures to a 10-acre parcel. Common examples include
residential, industrial, commercial, institutional facilities, cemeteries, airports, golf courses,
sanitary landfills, sewage treatment, and water control structures.

Other Land is land not included in any other mapping category. Common examples include low
density rural developments; vegetative and riparian areas not suitable for livestock grazing;
confined animal agriculture facilities; strip mines, borrow pits; and water bodies smaller than 40
acres. Vacant and nonagricultural land surrounded on all sides by urban development and greater
than 40 acres is mapped as Other Land.

Water - perennial water bodies with an extent of at least 40 acres.

Soil Characteristics and Implication on Farming Activities (US Soil Data View
2.1)

Available Water Capacity (AWC) refers to the quantity of water that the soil is capable of
storing for use by plants. The capacity for water storage is given in centimeters of water per
centimeter of soil for each soil layer. The capacity varies, depending on soil properties that affect
retention of water. The most important properties are the content of organic matter, soil texture,
bulk density, and soil structure, with corrections for salinity and rock fragments. Available water
capacity is an important factor in the choice of plants or crops to be grown and in the design and
management of irrigation systems. It is not an estimate of the quantity of water actually available
to plants at any given time.

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil
transmit water. The estimates are expressed in terms of micrometers per second. They are based
on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated
hydraulic conductivity is considered in the design of soil drainage systems and septic tank
absorption fields.

Percent Clay: clay as a soil separate consists of mineral soil particles that are less than 0.002
millimeter in diameter. The estimated clay content of each soil layer is given as a percentage, by
weight, of the soil material that is less than 2 millimeters in diameter. The amount and kind of
clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb
cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic
conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount
and kind of clay in a soil also affect tillage and earth-moving operations.
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K-factor, whole soil: Erosion factor K indicates the susceptibility of a soil to sheet and rill
erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE)
and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil
loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on
percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic
conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher
the value, the more susceptible the soil is to sheet and rill erosion by water.

Depth to water table: "Water table" refers to a saturated zone in the soil. It occurs during
specified months. Estimates of the upper limit are based mainly on observations of the water
table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic
features) in the soil. A saturated zone that lasts for less than a month is not considered a water
table.

Irrigation class: Land capability classification shows, in a general way, the suitability of soils
for most kinds of field crops. Crops that require special management are excluded. The soils are
grouped according to their limitations for field crops, the risk of damage if they are used for
crops, and the way they respond to management.

In the capability system, soils are generally grouped at three levels-capability class, subclass,
and unit. Only class and subclass are included in this data set.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers
indicate progressively greater limitations and narrower choices for practical use.
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Table 3. Using 30-year average max, min temperature and precipitation including squared terms

for 2002 — 2006 conversion, t-value in bracket

Variable No Spatial t-statistics, Corrected for Spatial Dependence With County Fixed
Correlation (Conley’s Method) Effects
Robust Standard IDW Cutoff Range IDW Cutoff Range
Errors =.1 =5 (Col 4)
(Col 1) (Col 2) (Col 3)
Max Temperature 2202.01 (2.40)" (1.65)" 1582.31
(3.35)™ 17"
Max Temperature, -50 (237" (-1.63)" -30
squared (-3.33)™ (-1.84)
Min Temperature 243.06 (2.19)” (1.33) 137.39
(3.03)™ (.99)
Precipitation 6.72 (1.37) (.85) 4.40
1.96)” (1.22)
Precipitation, squared -.0000486 (-1.68)" (-1.04) -.0000194
(-2.40)" (-1.12)
Perimeter, 2002 -9.65 (-6.39)™ (-3.41)™ -10.39
(-8.67)™ (-9.33)™
Median Family -10.02 (-3.67)™" (-233)" -6.60
Income, 2000 (-5.23)™ (-1.65)"
Population Density, 8.52 (.52) (.33) -20.83
2000 (75) (-1.11)
Water Capacity 3814582 (2.50)” (1.66)" 1727221
(3.49)™ (2.08)"
K Saturation 11675.32 @4n™ (1.84)" 10508.2
(3.46)™ (329"
Percent Clay 10623.35 1.73)" (1.50) 11549.2
2.44)" 2.23)"
K factor 927405 (-1.44) (-1.12) -526346
(-1.97)" (-1.30)
Irrigation Class 53252 GBIH™ (2.43)" 23969
(5.07)™ 2.28)"
Water Depth -1258.42 (-1.34) (-1.21) -297.81
(-131) (-41)
Constant 2686994 (-2.32)" (-1.61) 2295537
(-321)™ (-2.52)"
F-stat 9.10 7.66
Spatial Autocorrelation .69 47
Coefficient (rho) (32.28)™" 7.67)""

sk wk

, ™, " symbols denote coefficient significant at 1%, 5% and 10% significance level, respectively

Increasing cutoff range or placing less weight to distant observations will produce less spatial autocorrelation as expected in rho

values.
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Table 4. Using 25-year average number of days above 90F, min temperature and precipitation
including squared terms for 2002 — 2006 conversion, t-statistics in bracket

Variable No Spatial t-statistics, Corrected for Spatial Dependence With County Fixed
Correlation (Conley’s Method) Effects
Robust Standard IDW Cutoff Range IDW Cutoff Range
Errors =.1 =5 (Col 4)
(Col 1) (Col 2) (Col 3)
Number of Days above 73443 (2.45)" (1.59) 3007.2
90F (3.50)™" (1.59)
Number of Days above -52.33 (-2.57)" (-1.69) -20.80
90F, squared (-3.65)™ (-1.79)"
Min Temperature 225.86 (1 .82)* (1.10) 208.67
(2.55)" (1.24)
Precipitation 8.46 171" (1.05) 3.88
(2.45)" (1.01)
Precipitation, squared -.0000582 (-1.94)" (-1.19) -.0000186
(277" (-.99)
Perimeter, 2002 -9.33 (-6.18)™ (-3.37)™ -10.19
(-8.39) (-9.11)™
Median Family -7.99 (-2.75)™ (-1.82)" -6.94
Income, 2000 (-3.90)™" (-1.71)
Population Density, 10.77 (.66) (.40) -21.19
2000 (.96) (-1.06)
Water Capacity 3789837 (2.56)" (1.69)" 1760094
(3.56)™" 2.12)"
K Saturation 11436.6 (2.49)" (1.87)" 10394.8
347™ 321"
Percent Clay 10526.3 (1.76)" (1.59) 11779
(2.46)" 229"
K factor -866496 (-1.40) (-1.09) 467702
(-1.92)" (-1.16)
Irrigation Class 49887 (3.70)™ (2.48)" 23793.6
(5.00)™ Q24"
Water Depth -1317.30 (-1.42) (-1.29) -244.75
(-1.38) (-34)
Constant 677112 (-1.63)" (-1.18) -383493.6
(211" (-1.06)
F stat 8.99 7.56
Spatial Autocorrelation 45
Coefficient (rho) (7.28)"
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Table 5. Using 30- year average temperature and precipitation for 2002 — 2006 conversion,

t-value in bracket

Variable No Spatial t-statistics, Corrected for Spatial Dependence With County Fixed
Correlation (Conley’s Method) Effects
Robust Standard IDW Cutoff Range IDW Cutoff Range
Errors =.1 =5 (Col 4)
(Col 1) (Col 2) (Col 3)
Mean Temperature 1566.23 2.24)" (1.54) 969.94
(3.13)™ (1.60)
Mean Temperature, -48 (-2.06)" (-1.40) -20
squared (-2.89)™ (-1.06)
Precipitation 8.26 1.72)" (1.07) 4.99
(2.46)" (1.38)
Precipitation, squared -.0000584 (-2.05)" (-1.27) -.0000237
(-2.92)™ (-137)
Perimeter, 2002 -9.55 (-6.33)™ (-3.40)™ -10.39
(-8.60)™ (-9.3D)™
Median Family -10.03 (-3.66)™ (-2.32)" -6.50
Income, 2000 (-5.20)"™ (-1.63)"
Population Density, 13.56 (.82) (51 -19.02
2000 (1.18) (-1.02)
Water Capacity 3674447 2.43)" (1.60) 1759850
(3.38)™ @.1n”
K Saturation 11330.9 2.43)" (1.80)" 10323.3
(3.40)™ 3B.24)™
Percent Clay 10614.3 1.73)" (1.49) 11515.8
Q.44)" 224"
K factor -880764 (-1.37) (-1.05) -517007
(-1.87) (-1.27)
Irrigation Class 53029 372 (2.43)" 24250
(5.09)™" 230"
Water Depth -1295.26 (-1.39) (-1.26) -269.30
(-1.35) (-37)
Constant -1415466 (-2.08)" (-1.47) 1171114
(-2.81)™ (-2.00)
F stat 9.67 8.02
Spatial Autocorrelation 49
Coefficient (rho) (7.96)™
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Table 7. Validation with Schlenker at el. (2006) climate data for 2002 — 2006 conversion'

Variable

Degree Days (8 32)
Degree Days (8 32),
squared

Degree Days (34), square
root

Precipitation

Precipitation, squared

Perimeter, 2002
Median Family Income,

2000
Population Density, 2000

Water Capacity
K Saturation
Percent Clay

K factor
Irrigation Class

Water Depth

Constant

F stat

Spatial Autocorrelation
Coefficient (tho)

No Spatial Correlation

t-statistics, Corrected for Spatial Dependence (Conley’s Method)

Robust Standard Errors IDW Cutoff Range IDW Cutoff Range
(Col 1) =1 =5
(Col 2) (Col 3)
17141 Q61" (1.74)"
(3.60)
317 (-2.62)™ (-1.76)"
(-3.61)
-164748 (-1.86)" (-1.16)
(-2.44)
140167 (1.68)" (1.21)
(2.28)
-876.78 (-1.55) (-1.16)
(-2.09)
932 (-6.64)" (-3.64)™
(-8.78)
-691 (-3.19™ (-2.20)"
(-4.43)
31.82 171" (1.10)
(2.23)
2908711 Q24" (1.48)
(3.12)
9562.9_ 2.26)" 170"
(3.16)
13173 @.on™ (1.68)"
(2.85)
-903759 (-1.59) (-1.23)
(-2.17)
54409 (3.43)™ (2.16)"
(4.64)
-1431.4 (-1.51) (-1.34)
(-1.48)
-2.82¢+07 (297" (-1.88)"
(-4.14)
9.43
48 (7.64)™

'Note that Schlenker et al (2006) data is county average, so no county fixed effects model could be estimated as the county-level
data already capture all other county effects, if had, on conversion.
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Figure 2 — PRISM 30-year Climate Normals: Max and Min Temperature

30-year Max Temperature

. Hgh : 3266

Low : -141

30-year Min Temperature

. Hgh : 1334

Low : 280
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Figure 7: Interpolation of the number of days above 90°F using Kriging and IDW method

Interpolated Number of Days

High : 176,081

Low : 7.3572

above 90 degrees in 2000 by Kriging
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