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Abstract 
 

To model the impact of climate change on farmland conversion, I propose using climate extreme 
variables instead of climate normals. I particularly look at the number of extreme heating days, 
or days which recorded temperature reaches 90oF. I construct a 25-year climate extreme surface 
using real time observations from the weather station network in California. Initial result 
confirms the proposition that farmland conversion is affected by climate condition, although the 
effect is minimal, but present and remains highly significant across a number of specifications. 
Extreme variables are better predictors of climate change impact than using mean condition. 
Farmland conversion is nonlinearly affected by climate changes: an increase in heat and 
precipitation is beneficial, but excessive increase is harmful and will accelerate farmland 
conversion.  

 

1 Frankie is a doctoral candidate at Department of Agriculture and Resource Economics. I am motivated by the work 
on the impact of climate changes on farmland values and discussions with Professor Anthony Fisher. I would like to 
thank Dan Cayan and Mary Tyree at California Climate Change Center, Scripps Institution of Oceanography, UCSD 
for their permission to use the downscaled dataset. This is a preliminary work and subject to changes and additional 
materials. For any suggestion please contact the author at phule2311@gmail.com.
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INTRODUCTION 

There is a growing consensus that climate changes2 will bring harmful consequences. The 
impacts of climate changes have already occurred and will likely exacerbate in the future. 
According to IPCC WGII Fourth Assessment Report (WGII-AR4), Chapter 14, “North America 
has experienced substantial social, cultural, economic and ecological disruption from recent 
climate related extremes, especially storms, heatwaves and wildfires” and that “North American 
people, economies and ecosystems tend to be much more sensitive to extremes than to average 
conditions. Incomplete understanding of the relationship between changes on the average climate 
and extremes limits our ability to connect future impacts and the options for adaptation.” 

There have been many researches on the possible impacts of climate changes in economic 
impacts, public health, urban growth and the environment. However, there is a challenge in the 
study of climate change impacts, since modeling the impacts of extreme events are more difficult 
than shifting in average condition (WGII, Chapter 5). For the agriculture, there is no agreement 
on how crops respond in various conditions, although it is generally understood that the 
increasing frequency of extreme events may lower crop yield beyond marginal gains from longer 
growing seasons and more precipitation. It is important to note that the there is still some doubt 
over the impacts on agricultural production. North America agriculture, especially in mid and 
high latitude region, may benefit from moderate increase in local temperature, but further 
warming would be harmful (with medium to low confidence, WGII, chapter 5). But the lower 
latitude regions including California would likely suffer. 

In this study I will look at the impacts of climate changes, particularly the extreme events, on 
farmland conversion in California. I will use comprehensive state-wide farmland tracking data 
from 1984 to 2006 to map out the location of the conversion at each county, then model the 
conversion on a set of climate condition and extreme events, controlling for other potential 
factors such as soil or socio-economic characteristics. 

 

2Climate change is defined as a long run trend in weather fluctuations, versus short run deviation of weather 
variables from average daily values. IPCC WGII emphasizes that “detection of climate change is the process of 
demonstrating that an observed change is significantly different (in statistical sense) from what can be explained by 
natural variability.”
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CURRENT LITERATURE ON CLIMATE CHANGE IMPACTS AND FARMLAND 
CONVERSION: REVIEW AND SHORTCOMINGS 

 

Although there have been many studies on the conversion of agriculture land to urban usage 
(often known as land use-land use change or urbanization model3), very limited efforts have been 
spent on studying the impacts of climate changes on land conversion. 

Multiple difficulties are encountered in this issue. Firstly, climate changes occur over a long time 
horizon, so to reliably study the impacts of climate changes there need very good time series 
data. Secondly, there are many factors behind farmland conversion, among which most often 
cited urban-driven factors such as rapid population growth, increasing income and expansion of 
urban infrastructure are easy to model in many studies as the exclusive causes of urbanization. 

Another reason as often perceived in public opinion is that climate changes happen gradually 
rather than sudden changes, thus adaptive capability can be introduced on time to weather out the 
possible impacts from global warming. This is not the case, unfortunately. Climate changes, 
while defined as the long term trend in mean climate variables such as temperature and 
precipitation, the increasing fluctuations in climate and the extreme events have the most serious 
consequence, given short-run adjustment may not be feasible or  the adaptive capability to 
extreme events is “uneven and not adequate” (IPCC, WGII). 

In most studies involving climate change impacts, temperature and precipitation is used as the 
indicators and the most easily observed variables. Mean temperature and seasonal cycle in 
temperature over relatively large spatial areas show these clearest signals of changes in the 
observed climate (WGII, Chapter 1). However, this comes with a cost: no extreme events may be 
used to determine the effect at local level. This would result in significant underestimation of the 
effect of climate changes, since the extreme events have more significant impacts than projected 
gradual changes. Climate models using mean temperature and precipitation often aggregate data 
over a large spatial scale and pooled time series, thus unable to estimate the effect of localized 
events such as heavy precipitation or local droughts. 

This leads to questionable results in many existing models using only trend in mean variables, 
which isn’t enough to capture the full variations, to predict the impacts of climate changes. 
Without accounting for climate extremes, the impacts would be vastly underestimated.  While  
anticipated changes were often well adapted to (such as future heating, so houses were built to be 
 
3 There is some difference in the term “urbanization” in general literature from “farmland conversion” or “farmland 
loss” used in this study since the former specifically refers to the conversion of agriculture land to urban usage, but 
the latter not necessarily. This view is also reflected in California Department of Conservation’s Farmland 
Monitoring and Management Program (FMMP) report that farmland loss is not due to urbanization alone (FMMP 
2002-2004 report, page 2). FMMP classifies farmlands into 8 categories (see appendix), and in this paper I am 
looking at the conversion away from prime farmland to any other usage, urban or non-urban wise. Attention is paid 
to the conversion of prime farmland, the most productive land, for the very economic reason that climate changes 
and agricultural production is related. Inclusion of unproductive land would divert the attention away from impacts 
on agricultural production. Although climate changes may affect land conversion in many different channels, 
nonagricultural conversion has more to do with urban-driven factors rather than through agricultural production. 
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more heat efficient, require less cooling, or redundant capacity is built in new irrigation system 
to store more water for anticipated longer droughts), but extreme events were often surprised and 
thus unprepared for. 

The next section will briefly review two relevant branches of literature in climate change impacts 
on US agriculture and California specifically, and land use change models. 

 

Climate Change Impacts on California Agriculture 

Most reviewed studies seem to agree that future California is adversely affected by climate 
changes, although for the whole US it may be different. Schlenker, Hanemann and Fisher (2005) 
show that there is a significant relationship between precipitation, temperature measured at 
selected months for primarily non-irrigated farmland in US and farmland values. Further work 
by Schlenker et al (2006) with spatial model using a more sophisticated modeling of climate 
variables such as degree days and precipitation over growing season also confirms the effect of 
harmful high temperature or precipitation. That is precipitation and degree days positively 
related with farm values, but too much will be harmful. Extreme temperature (degree days over 
34oC) is also negative and significant. Schlenker et al (2007) applies the model to California 
using water availability (access to irrigation water) also predicts damages from climate changes 
from potentially large increase in growing-season temperatures and less water for irrigation. 

California agricultural landscapes mean climate change impacts are further exacerbated by 
multiple vulnerabilities. California agriculture is more dependent on irrigated water unlike the 
rest of the country and won’t benefit from increased precipitation. Higher temperature, more 
evaporation and less precipitation would mean more demand for water from agriculture and 
urban uses. Future water shortage is also expected due to rapid population growth, which is 
predicted to almost triple by the end of the century (Cavagnaro, Jackson, and Scow, 2006). 

Among very few studies of the impacts of climate extremes on agriculture, Lobell, Torney and 
Field (2009), by measuring insurance and disaster payment, concludes that excess moisture, cold 
spells and heat waves are the most significant causes of damage, “major damages to crop and 
livestock industries are possible with extreme events, with costs of insurance claims from 
specific extreme events reaching into the hundreds of millions” (Lobell, Torney and Field, 2009). 
However, this is only a descriptive summary linking payout and proportion of each type of 
extreme events, not an empirical model.  

In contrast, Deschenes and Greenstone (2007) predict the opposite result that US agriculture may 
benefits from climate changes. In their study, they define climate changes as the difference 
between observed weather realization and historical mean (1970-2000) at county level, then 
model farmers’ profit as a function of weather fluctuations and find that “predicted changes in 
climate will have a statistically and economically small effect on crop yields of the most 
important crops”. However, treatment of climate variation in Deschenes and Greenstone study 
might cause a significant underestimation of the impact. The use of climate extremes must be 
properly handled so as to preserve the variation of the local events from averaging over time and 
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space. Deschenes and Greenstone, by “simple average maximum and minimum temperature 
from each station” and “simple average of the mean temperature across all stations within a 
county”4, will dampen any fluctuations in the measured temperature. In the presence of high 
fluctuation between observations and spatial dependence, averaging those extreme observations 
is misleading. However, it is worth to note that they reach the same conclusion that significant 
negative effect of climate changes is expected in California. 

The most important result of Schlenker, Hanemann and Fisher studies is that farmland value is 
adversely affected by decreasing water availability or warming condition in California: degree 
day (or precipitation) is significant, but too much heat (quadratic degree days) (Schlenker et al, 
2007), and extreme heat (greater than 34oC) will harm the crops, thus decrease farmland values 
(Schlenker et al, 2006). This will lead to an immediate question about to which extent farmland 
conversion is affected by changing climate conditions. As we assume farm owners maximize 
economic profit from the value of the land, adverse weather reduces farm productivity, thus 
adversely affect the value of the land on which crops are grown. Therefore, it is expected that 
climate changes would depreciate farmland values and accelerate the conversion to other usage 
in the presence of increasing threats of urbanization. 

I attempt to answer this question using a more comprehensive set of weather and climate extreme 
variables in addition to the usual treatment of control variables including all relevant soil and 
socioeconomic characteristics. The paper specifically addresses to the effects of climate extremes 
particularly heatwaves and heavy precipitations. This would be the first model to map farmlands 
vulnerable to climate extreme events in California. This approach will extend land use change 
model with an extra dimension to accommodate for the impact of climate changes. Another 
advantage is the application of GIS which allows tracking every piece of farmland converted 
from 1984 to 2006 in most counties in California, thus avoiding the issue of aggregation and 
possible aggregation bias in the result. 
 

Review of Land Use Change and Urbanization Models 

Many researches are done on the modeling of land use/land use changes and urbanization in city 
planning and transportation studies. Most common approaches are to model the equilibrium of 
land supply and demand using a monocentric city model (von Thünen) or the bid-rent approach 
(Alonso), more complicated models used in city planning often integrate GIS data to provide 
more real-time results. 

According to Veldkamp and Fresco (1996), land use “is determined by the interaction in space 
and time of biophysical factors such as soils, climate, topography, etc., and human factors like 
population, technology, economic conditions” Kuminoff and Sumner (2002) restate that 
economists agree that farmland conversions is driven by income growth, population growth and 

 
4 Details explained in the interpolation of climate extremes section 
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farm return, but there is no consensus on how these factors interact to shift farmland out of 
farming, and how important is each factor, and how to model the process.  
 
Among most models reviewed, urban-driven factors such as population and income growth are 
often modeled as the exclusive causes of land use changes, constrained by development policy. 
Some models extend to include interactions with vegetations and the habitat. In the presence of 
overwhelming population growth and migration toward urban areas, it is comprehensible that 
climate change impacts were often ignored. 

The Kuminoff and Sumner (2002) model offers the simplest approach to farmland conversion 
using aggregate county level data and reports that urban-rural proximity and population growth 
is the main driver, while change in farm income and housing price not significant. However, 
their model uses the average converted acreage over county-wide for all types of farmland, 
effectively destroying all extremely useful spatial information which could be derived from using 
GIS data, as well as lacking a treatment for soil and local attributes which could be significant 
factors beyond urbanization effects alone. By pooling all counties and farmland types together, 
their result is based on the estimation of only 84 observations for two pooled time periods 1988-
1992 and 1992-1998. Such a small sample size raises a question over the reliability of 
aggregating over huge spatial space and temporal scale while a disaggregate model of land use 
changes on the same data often have to process million of cells. This model also suffers from a 
serious endogeneity problem, as farm income can’t be treated as an explanatory variable for 
conversion5.

Lavia, Clarke and Page (2000) have a more rigorous approach to modeling farmlands prone to 
residential development by only considering variables which have influence on land values such 
as farm size, slope and distance to nearest city center, distance to nearest highway. 

Only the more complex models such as CURBA (California Urban and Biodiversity Analysis 
Model) (Landis et al. 1998), which is the next generation of California Urban Futures (CUF) 
model with an additional module on habitat simulation, can take advantage of GIS to simulate 
the pattern of future land use changes under different development policies. These models use a 
random utility framework to predict the probability of conversion at every cell using multinomial 
logistic regression. Newburn et al (2005) utilized this framework to explore problem of vineyard 
conversion and residential development in Sonoma County, California to conclude that 
conversion is more likely in areas with flat slopes and warmer microclimate or growing degree 
days. 

 
5 Farm income or rent is dependent on farm attributes. High quality soil can be more productive, thus rent is higher. 
This is the concept of Ricardian rent. Farmland conversion and farmland income are both a function of farm and 
other attributes. The analog is to estimate supply (or quantity demanded) on price, yet price at equilibrium is 
endogenous because it changes on supply and demand. Customer preferences (or farm attributes) are exogenous to 
both price and quantity. Treating farm income as an exogenous variable will result in biased coefficients using 
ordinary least square method in Kuminoff and Sumner (2002). 
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Other land use models that have been used in California such as SLEUTH (Slope, Land Use, 
Exclusion, Transportation, Hillshading) (Clarke, 1997) or UPLAN (Johnston, 2002) are also 
exclusively urban driven. 

Several land use models have incorporated interaction with the vegetation such as MEDALUS 
(Mediterranean Desertification and Land Use Project) (Openshaw and Turner, 2000) and CLUE 
(Conversion of Land Use and Its Effects) (Veldkamp and Fresco, 1996) by including climate 
variables to model the biophysical process. However, they stop at using mean temperature and 
precipitation only. 

More recent work by Howitt, Azuana and MacEwan (2009) specifically links potential 
agricultural yields to land use using SWAP model (Statewide Agricultural Production Model), a 
mathematical optimization model, to conclude that "while the effect of climate change is 
manifest through yield changes, after economic adaptation, the results on irrigated crop 
production are predominately shown in economic terms and changes in aggregate land and water 
use." Their model predicts acreage loss from 16 to 24 percent of irrigated land in various regions, 
while revenues would fall from 9 to 16 percent due to partial offsets from price and crop 
changes. 

No existing land use model has used climate extremes, which have more substantial impacts and 
more detectable than using climate normals. Areas vulnerable to adverse weathers are likely to 
get affected first, and with the increasing trend and severity of adverse weather, we probably see 
an acceleration of farmland conversion as separately from urban driving factors. Ignoring climate 
factors would likely result in overestimating the effects of urban-driven factors in place where 
there are other potential harmful factors, climate changes or otherwise, that negatively affect 
farm production. As lands expectedly become less arable in the future, the increasing pressure of 
population and income may drive more farmland out of less profitable agriculture production. 

 

FARMLAND CONVERSION STATUS IN CALIFORNIA 
 
The conversion of agricultural lands poses a serious threat to California agriculture. California’s 
Department of Conservation reported a consistent trend of increasing urbanization and 
movement of agriculture land to other uses in most counties in California during the past two 
decades. According to the last report, during the period 2002-2004 there was a loss of 170,982 
acres of farmland of all types, among which the highest quality farmland (prime farmland) 
accounts for 46% of the total. Translating to acreage, prime farmland loss in 2002-2004 period is 
78,575 acres, a big surge from 47,172 acres in 2000-2002. Figure 1 shows that the trend of prime 
farmland conversion is particularly damaging in the past decade with almost half of total 
conversion in almost periods except 2000-2002. Total prime farmland loss during the period of 
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study is 461,272 acres, approximately 9 percent of total prime farmland stock available by the 
end of 2004 (5,076,207 acres). 

 

Figure 1 
 

Source: Author calculates from FMMP reports. Other farmland conversion includes all nonprime 
farmland conversions. Farmland classification is in the appendix. 
 

However, urbanization is not the only cause of conversion, as nearly 40% of the conversions out 
of agriculture land were to other uses. There are also other conversions from productive farmland 
to idling land, non-irrigated cropping, wildlife areas, low density residential uses, mining, or 
confined animal agriculture facilities, which need explanations more than just conversion to 
urban uses. This shows that the dynamics of farmland conversion in California is more complex 
than urbanization alone (FMMP 2002-2004 report). As a consequence, any study modeling 
farmland conversion must consider factors beyond urban driving forces.  
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MODELING THE IMPACT OF CLIMATE CHANGES ON FARMLAND 
CONVERSION 
 

The aim of this paper is to model the impact of climate changes on farmland conversion, paying 
attention particularly to extreme events such as high temperature, frosts and heavy precipitation, 
while controlling for other factors such as urban influence and soil characteristics. 

It is assumed that farmland owners maximize profit, either as a net discounted rent from future 
farming (or the Ricardian rent), or sell the land and convert it to another usage. This is the 
traditional approach to urbanization. Facing possible adverse climate impacts which would 
reduce future farming profit, more farmland conversion is expected. There are a couple of notes 
here. Firstly, I assume that the conversion is purely based on economic decision. Farmlands that 
have been planned for other usage will be excluded from the data. Unlike urbanization model 
which requires the land to be converted to urban usage, in this model farmland can be converted 
to urban or other usage, or even left idling. 

Secondly, is there any market mechanism which may benefit farm owners from harmful climate 
extreme events? If farm supply was disrupted by local climate events, but not replenished from 
other places, then price was expected to increase. If price increases by too much it may offset the 
losses of damaged crops and farm owners may actually benefit. In this case probably we can see 
a conversion from idle lands or other lands back to prime farmland! However, it is reasonable to 
assume such events, if had, is not strong enough to interfere with the conversion trend since short 
term gain would not outweigh expected future cost of maintaining the farm. Similarly, if demand 
for some crops increases, we may see idle land move back to cultivated lands. (FMMP 2002-
2004 period reports irrigated acreage gains in Antelope Valley of Los Angeles County due to 
strong market demand of baby carrots and potatoes, although two thirds of those lands didn’t 
meet prime farmland criteria). That will partly offset the effects of climate changes on 
conversion.  The easiest way to deal with this is to assume price constant, thus no external 
market intervention. Existing study (Deschenes and Greenstone, 2007) also holds price constant. 
Including a time fixed effects may also solve this problem. 

Thirdly, there is a legislative issue which may limit the option of farm owners from conversion. 
California initiated Williamson Act from 1965 to protect the state’s farmland from conversion by 
giving financial incentive to farm owners. Farm owners will get property tax credit by entering a 
10 year rolling contract with the government. Up to a half of the state’s farmland is under 
protection of the act now. Only farms of 100 acres up are eligible. Farm owners must pay 
cancellation fee if want to drop out of the program before contract is due. Thus, a downward bias 
of the impacts of climate events will be expected. 

The next section will describe the data sources, followed by the methodology and estimation 
strategy. 
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DATA SOURCE AND DATA PREPARATION 
 

Much data used in this paper come from public GIS database, which often need extensive 
processing for analytical modeling. There are several occasions in which the use of GIS 
operations is explained in details to provide insight of the raw data and the data format used in 
the econometric modeling.  

 
Data Sources and Description 
 
Farmland data 
 
California Department of Conservation initiated the Farmland Mapping and Monitoring Program 
(FMMP) in response to “a critical need for assessing the location, quality, and quantity of 
agricultural lands and conversion of these lands over time. FMMP is a nonregulatory program 
and provides a consistent and impartial analysis of agricultural land use and land use changes 
throughout California” (California Department of Conservation). 

The first biennial report on farmland landscape was available in 1984. Since then there have been 
10 published reports and 12 GIS database made available to the public with the latest report in 
2006 (by the time of this writing, the 2006 report is classified as unofficial). Over time, there are 
more counties and land area mapped and published, up from 38 counties in 1984 report to 46 
counties in 2006. The database now maps nearly 96% of state’s privately held agricultural and 
urban land use covering 47.9 million acres in 49 counties. 

There are 8 types of important land use in FMMP classification: prime farmland, farmland of 
statewide importance, unique farmland, farmland of local importance, grazing land, urban and 
built-up land, other land and water (farmland list in appendix).  FMMP team uses remote sensing 
satellite images, aerial orthophotos and soil survey data from the US Department of Agriculture 
in the classification process and verifies by ground survey, as well as inputs from other parties. 

 
Climate data 
 
Mean weather variables from the PRISM dataset (Parameter-elevation Regressions on 
Independent Slopes Model of the Oregon State University PRISM group) are used. I am using 
30-year average max, min and mean temperature, precipitation for the period 1971-2000. PRISM 
data is available in grid cells at a resolution of 30 arcsecond (roughly 800mx800m). Within each 
cell it is assumed that weather variables are homogenous. Figure 2 in the appendix shows the 
pattern of PRISM climate normal 30-year max and min temperature. 
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The reason we need to consider both max and min temperature separately, according to Lobell et 
al. (2006), is that “because they are often not correlated from year to year with each other, 
particularly in winter and often one but not the other is highly correlated with yields. Combining 
the two into average temperature would therefore degrade model performance. Also square term 
is included to capture non linear relationships, as crops often possess an optimal temperature 
where yields are maximized relative to both cooler and warmer temperature”. 

 

Historical weather records 

Another set of weather variables are real time observations at the National Climatic Data Center 
(NCDC) weather station networks. I only extract observations from those stations having reports 
for any the studied period from 1980 to 2006. There are data on daily maximum and minimum 
temperature and precipitation. There were 628 stations listed as active during at least some or the 
full period from 1980 to 2006. The station positions are matched onto state plane by longitude 
and latitude address, from which weather data on the whole state surface can be obtained by 
interpolation method. Figure 3 shows the locations of the station network on the state plane. 

 

Figure 3. Location of the weather stations on state plane 
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Soil characteristics 

Since the classification of the farmland was done on USDA’s SSURGO soil survey database, 
this paper will use the same dataset to make it consistent with the classification6. Following 
literature, I will also use a set of variables representative of farmland quality like average water 
capacity, permeability, erodibility, percent clay, irrigation class and depth to water table. 
Complete explanation of the soil characteristics is included in the appendix. Soil characteristics 
are assumed unchanged overtime. 
 

Demographic and socioeconomic data 
 
To control for urban pressure which drives the conversion from the demand side, population 
density and median income will be used. These come from two US censuses in 1990 and 2000. 
The urban influence is weighted by distance from urban areas to the farm location. Since there is 
no hard edge between urban-rural areas, many studies use the distance by centroid between the 
farm location and the nearest census tract or the central business district as in mono-centric urban 
growth model. US census database provides a useful urban area designation7, which could be 
more informative than using census tract. 

 
Data Preparation 
 
Since the farmland polygon isn’t parceled, and most often come with irregular shapes of various 
size (Figure 4 and 5), as in any spatial modeling of conversion, we need a standardized 
measurement unit. 

To do this, I create a grid layer of .25x.25 arcmin (roughly 4x4 km) on the state plane to be used 
as the geo-referencing layer. As in any spatial modeling, the choice of cell size is arbitrary, thus a 
valid result should remain using different cell sizes. Validation using different cell size is 
tempted. However, the choice of size is induced by computing resource and at the same time 
preserves some local attributes. Too coarse resolution would facilitate computation at a loss of 
local information, thus prone to aggregation bias. This is particularly true when we have very 
irregularly shaped, elongated farm polygons spreading over a wide area, thus different parts may 
have exposed to very different condition (urban stress, soil, weather etc). 

 
6 Soil Survey Geographic Database from the U.S. Department of Agriculture, Natural Resources Conservation 
Service. SSURGO version 2.1 (2006) is used. 

7 Urban areas are designated as places where “Core census block groups or blocks that have a population density of 
at least 1,000 people per square mile (386 per square kilometer) and surrounding census blocks that have an overall 
density of at least 500 people per square mile (193 per square kilometer).” (http://en.wikipedia.org/wiki/Urban_area) 
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Then I use this layer to join and clip with other data layers to extract all interested variables. The 
products will be layers with each cell complete of spatial reference and attributes. 

 

Figure 4 : Location of Prime Farmlands  Figure 5 : Extracting Converted Land Demo 

 

Extracting converted farmland polygons from state farmland layers 
 
Each type of farmland is classified as farm polygon in FMMP data. To extract the converted area 
during each biennial report, firstly each layer was successively overlaid onto another to detect 
where a conversion had taken place between two report periods. The dependent variable will be 
derived as the amount of prime farmland converted between two biennial reports in each cell 
(Figure 5). The edge length (perimeter) will be calculated for each cell, since more fragmented or 
close proximity to the edge farmlands are prone to conversion than contiguous farms. 

According to FMMP report, the minimum mapping unit used in FMMP data is 10 acres. 
Farmland of smaller size will be attached to the next neighbor land. The minimum unit of 

Non overlapped 
areas are converted 
acreage 
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measurement within GIS database is 0.3 acre. This has an implication on the number of the 
converted farmlands found. Due to mapping inconsistency, or human errors, there are occasions 
which the polygons or lines do not perfectly line up. The result is that there are some areas which 
didn’t experience a conversion but incorrectly determined, and some converted areas appear very 
small compared to the minimum unit of measurement of 0.3 acre. So these areas resulting from 
mapping errors will be excluded from our analysis. 

Some extra caution is taken with regard to farmland conversion due to administrative issues. Due 
to the reclassification of the farmland in some areas, the farmland loss due to being reclassified 
won’t be used in the analysis. Farmland loss due to government plans will be excluded too. 
Report on big conversions was often available at county level and published by FMMP, and 
those plots would be removed from the data. 

 
Deriving climate extreme surface – choice of interpolation methods 
 
This section will explain the method behind weather interpolation from weather station dataset to 
the whole state plane. This is a crucial part of predicting the effects of climate changes and 
weather extremes, especially because the nature of extreme events is rare, thus generalization 
and interpolation must be very cautious. I focus on the use of extreme temperature, i.e. 
temperature supposed to be damaging to crops. According to agronomic literature, this threshold 
is set at 90oF for maximum temperature. The number of days with maximum temperature 
recorded above 90oF at every location were interpolated from a series of nearby stations, thus 
avoid the issue of aggregating and averaging over space. 

Since the records of extreme events are set of point estimates at the weather station locations, to 
estimate the impacts on a farm location far away from the observatories, we must interpolate the 
value of extremes to different places. Several interpolation methods are often used such as 
inverse distance weighting (IDW), nearest neighbor, spline and kriging. The results of Schenker, 
Hanemann and Fisher (2006) and Deschenes and Greenstone (2007) show how different 
interpolation methods may lead to very different, sometime even contradictory, results. 
Pointedly, Deschenes and Greenstone restrict climate variation to average observations from 
weather stations in the same county. This has a drawback that using mean temperature or 
precipitation often results in underestimating the impact from extremes. I attempt to use several 
interpolation methods including IDW and kriging. IDW assumes that the effect fall by linear 
function of the distance while kriging can accommodate for spatial dependence in the 
observations, in which nearby stations tend to report similar values than distant ones. Kriging is a 
geostatistical method, unlike deterministic approaches such as IDW.  

The potential problem with deterministic approach is that interpolated value is purely a function 
of distance between locations. Kriging takes into account the spatial autocorrelation between 
observations. The difference is evident when the observations are not randomly distributed. By 
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examining Figure 6 we can see how these stations with high and low records cluster at different 
places: high number of days above 90o F is concentrated in Southern California, the desert and 
central valley, in opposite to coastal and Northern areas with very few records. Moran test for 
spatial dependence rejects the spatial independence of these observations. Averaging the records 
over space will result in underestimating impact of the high records and overestimating the low 
records. A sample of interpolated extreme heating surface is presented in figure 7 in the 
appendix. 

 

Figure 6: Distribution of Number of Days above 90oF (Real-time Observations) in 2000 
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DATA SUMMARY 
 

For the initial result has been completed to date, Table 1 summarizes 4220 cells covering all 
documented prime farmland acreage from 2000 to 2006. 
 

Table 1: Some Descriptive Statistics 
(For PRISM data, temperature is in hundredths of a degree Celsius,  

precipitation in hundredths of a millimeter; interpolated precipitation is in inches) 
 

Description Source Mean Std. Dev. Min Max 
Climate Data      
30-year Average Max 
Temperature 

PRISM 2372.78     287.4649        1351        3165 

30-year Average Min 
Temperature 

PRISM 854.3367                 254.5065 -196 1482 

30-year Mean 
Temperature 

Average of max 
and min temp. 

1613.558        260.339       676.5    2293.5 

30-year Mean 
Precipitation 

PRISM 41213.75     22925.66        7108      186940 

25-year Average Number 
of Days Above 90F 
(IDW) 

Interpolated from 
NCDC 
observations 

70.04261        32.61343 4.457164   191.5524 

25-year Average Number 
of Days Above 90F 
(Kriging) 

Interpolated 114.0945      
 

24.94456    52.73724   190.1058 

25-year Average 
Precipitation (IDW)

Interpolated 14.00324      6.89008    1.735603    49.17206 

25-year Average 
Precipitation (Kriging) 

Interpolated 14.38143     6.835474     2.43149    50.25348 

Soil Data 
Average Water Capacity 
(AWC) 

SSURGO .1314087     
 

.0431373           0    .4652072 

Saturated Hydraulic 
Conductivity (Ksat) 

SSURGO 16.62466      14.84382        1.21    96.6791 

Percent Clay SSURGO 23.5575          8.979848    .7846025   51.3 
K-factor, whole soil SSURGO .2906025     .0878168           0 .49 
Depth to Water Table SSURGO 190.2441              28.92158 0 201.0012 
Irrigation Class SSURGO 2.263655      .848156           1 7 
Socio-economic  
Median Family Income, 
Weighted by inverse 
distance 
(US dollar, 1999)

US Census 2000, 
SF3, entry 
P077001 

45340.37         10672.72    27331.87   90768 

Population Density, 
Weighted by inverse 
distance  
(people per square km) 

US Census 2000, 
SF3, entry 
P003001 

3631.014      1186.466    555.3243   31956.36 

There are some anomalies worth mentioning in the values of soil characteristics regarding 
average water capacity, K-factor and depth to water table, i.e. the reported values are zeros. They 
aren’t necessarily missing or incorrect values, strictly speaking. Since the values are either 
weighted average or dominant condition at each cell level, it is possible to get such values. 
However, the impact of such anomaly is minimal. There are only 30 cells with reported zero 
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value of AWC, 7 cells of depth to water table and 37 cells of K-factor less than .02 (the 
minimum value reported by SSURGO), representing less than 1% total number of cells.  Models 
tested with and without such cells didn’t reveal any significant change at all. The largest missing 
cells come from irrigation class, which only have values for 3064 cells. However, dropping 
irrigation class also doesn’t change the result, especially with regard to the significance of the 
climate indicators. 

To see how separating maximum and minimum temperature from using mean only is significant, 
Figure 8 shows the distribution of these three climate normals at 4220 cells. We can see that max 
and min temperature keep the variation much better than the distribution of mean. This would 
later prove to be important in models using max and min temperature versus model using mean 
temperature alone. 
 

Figure 8 
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It’s also tempted to see how using extreme conditions, i.e. number of days above 90oF will better 
keep the variation than separating max and min temperature, Table 2 shows the correlation 
coefficients of these variables. Although the correlation is high, it is not as high as the correlation 
between max and min temperature. Figure 1 already shows the spatial variation of these two 
indices on the state plane. It’s easy to see that max and min temperature tends to be correlated 
with each another, i.e. Southern part is, on average, warmer than other areas. Yet, extreme 
heating days are quite different from average condition, evidently when we look at the 
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correlation between number of extreme days with max and min temperature, .83 and .65, while 
the correlation between average max and min temperature is even higher at .85. Some areas may 
be subject to more fluctuation in temperature, i.e. both more low and high temperature, thus even 
with a high number of heating days, using annual max and min temperature would just amount to 
averaging out these fluctuations, therefore underestimating the effect of the extremes. 
 

Table 2: Correlation between Climate Indicators 
 

Max Temperature, 
30-year Average

Min Temperature, 
30-year Average

Mean Temperature, 
30-year Average

Number of Days 
above 90F, IDW

Number of Days 
above 90F, Kriging

Max Temperature, 
30-year Average 

1

Min Temperature, 
30-year Average 

.8454 1    

Mean Temperature, 
30-year Average 

.9653 .9555 1   

Number of Days 
above 90F, IDW 

.8288 .6474 .7740 1  

Number of Days 
above 90F, Kriging 

.8134 .6901 .7864 .9294 1 

In the analytical part, I show results using several combinations of different climate indicators, 
using mean temperature and precipitation, separating out max and min temperature from mean, 
using the number of extreme heating days and finally validate the result with Schlenker et al 
(2006) data using degree days measure. 
 

SPATIAL REGRESSION MODEL 
 

I adopt a reduced-form approach8 to land use conversion as in Chomitz and Gray (1996), which 
models the conversion at each cell as a function of biophysical and socioeconomic 
characteristics: 

 
i o i i iy X Zβ β γ ε= + + +

for each cell i  

 
8 The mechanism of conversion is through allocating the land to highest-value usage, either as farmland rent or 
converting to other usage. Yet, farmland rent is endogenous as a function of farm attributes.  But we can formulate a 
model of farm rent on attributes, thus conversion function thereof. The first part is similar Mendelsohn et al (1994) 
approach to estimating farm value by hedonic regression. 
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y is the amount of prime farmland converted in each cell over the two report periods. X is vector 
of weather means and climate extreme variables. Z is vector of control variables including soil 
and socio-economic characteristics. 

To control for the nonlinear effects of climate condition, I am using the squared maximum 
temperature, squared precipitation and squared maximum number of days above 90o F. I am 
going to use three different combinations of climate indicators: by using mean temperature and 
precipitation only, separating max and min temperature from mean, then my favorite 
specification using number of days above 90o F. 

There is an issue of spatial dependency between observations, as said in the first law of 
geography that near things are more related than distant units, spatial autocorrelation need to be 
accounted for. For instance, farm owners may be affected by his neighbor’s conversion decision, 
or the process of clipping and extracting converted areas may have inadvertently created nearby 
observations which share attributes. 

There are two approaches to spatial dependency problem, either by using a spatial autoregressive 
(SAR) or spatial errors modeling (SEM). 

 
Spatial autoregressive model (SAR): 
 

i i iY WY Xδ β ε= + +
Spatial errors model (SEM): 
 

i i i

i i

Y X
W
β ε

ε ρ ε υ
= +
= +

where W is the spatial weighing matrix, δ and ρ is spatial autocorrelation coefficient. The 
presence of spatial dependence violates the condition that the error terms are uncorrelated, thus 
ordinary least square regression on spatial data is still unbiased, but inefficient in SEM model. In 
case of SAR model, it is both biased and inconsistent (Elhorst, 2003). 

In this paper I will show models estimated with robust standard errors, model with county fixed 
effects to control for county difference, then models with spatial errors using popular treatment 
to cross-sectional spatial dependence such as Conley’s GMM approach (1999) and Elhorst’s 
MLE estimator (2003). Test for spatial autocorrelation on robust standard errors shows that there 
is significant spatial dependence in the residuals, necessitating the spatial approach. I will use 
two weighting schemes to allow for the spatial spillover effects to extend from 0.1 degree in 
distance (roughly 10km) to 0.5 degree (~50 km). Extending the influence distance can correct for 
more spatial dependence, but at a cost, as spatial standard errors will be significantly higher, thus 
reducing the significance of the interested variables. 
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Panel data approach is possible, but substantially more data needed, which isn’t possible at this 
time. The initial result presented here comes from cross sectional data for 2002-2006 conversion 
period. The results here are also confirmed using MLE estimator9.

EMPIRICAL RESULTS 
 

Results on 2002-2006 conversion are reported in Table 3, 4 and 5 for three different 
combinations of climate variables: max and min temperature, extreme conditions and mean 
temperature. Robust standard errors without spatial dependence are shown in column 1. Column 
2 and 3 are models with spatial standard errors using inverse distance weighting schemes at two 
different cutoff ranges. Column 4 is model with robust standard errors and county fixed effects 
included. Dependent variable is the difference in prime farmland acreage in each cell from 2004-
2006 and 2000-2002 reports, so effectively it is the negative amount of converted areas. This 
arrangement is deliberated to generate an inverted U-shaped conversion function much as 
agricultural production function in agronomics. 

The first column in a three table shows all climate variables are highly significant and with the 
expected sign: 30-year mean maximum temperature and minimum temperature have positive 
effects on the negative farmland loss, or an increase in these variables will counter farmland loss. 
Yet, squared maximum temperature is negative, or it will accelerate farmland loss. The same 
holds for precipitation. This result is exactly as expected for the impact of climate on farm 
production: an increase in average temperature means prolonged growing seasons, thus farm 
values and helps keep farm in production. Look at Table 1 we see the average max and min 
temperature is at 23.7 and 8.5 degree Celsius, well below threshold for which crops may be 
harmed. The squared terms both have negative sign, showing that excessive increase in 
temperature and precipitation is harmful and will accelerate conversion. 

Table 5 reports the same conclusion as using max and min temperature separately: an increase in 
mean condition can help reduce farm conversion, yet to a certain extent the negative coefficient 
of the squared term will shadow the benefit of change in mean condition and harmful feedback 
will set in. What makes Table 3 and Table 5 different is the magnitude of the coefficients: 
separating max and min temperature both impacts are higher than averaging: for max 
temperature 2202, 30% higher compared to 1566 using mean temperature, and for squared term  
-0.50 vs. -0.48. Coefficients using the number of days above 90oF aren’t directly comparable 
with temperature. 

 
9 Data and program code are available upon request 
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Result using the number of days above 90oF (Table 4) is interesting: an increase in the number of 
days above 90oF will be beneficial, but it is also harmful if increases by too much.  

With regard to the soil coefficients, higher water capacity and higher permeability (K-saturation) 
are both positive as expected: farm with higher AWC can better support crop growth, thus farm 
values and less conversion. Higher permeability means that it is less prone to heavy precipitation 
events. Clay is positive and significant. Higher value of clay in soil content means more 
capability to keep water, in opposite to having more sand. Irrigation capability class is the 
suitability of farmland for most kinds of field crops. Higher values indicate the greater is the 
limitations and narrower choices for practical usage, thus less convertibility. So a positive and 
highly significant coefficient for irrigation class is well predicted. Two soil variables with 
negative estimates are K-factor and depth to water table. K-factor indicates the susceptibility of a 
soil to sheet and rill erosion by water, higher value of K-factor means more erodible soils, other 
things equal. So the results for K-factor and water table depth are both very intuitive. However, 
depth to water table variable isn’t significant in all models. 

For other control variables, the perimeter is negative and significant in all models as expected. 
This comes from the fact that conversion often took place near the border rather than deep inside 
farm polygons. Further, more fragmented or close proximity to the edge is likely more 
influenced by urban factors, planning or other factors than contiguous farms.  

Median family income is highly significant and also intuitive. Higher income indicates more 
pressure from urban demand, either through higher demand for land or implicitly driving up land 
price, thus inducing conversion. Population density coefficient is unexpectedly positive, however 
insignificant in all models. 

Column 2 and 3 are models with spatial correlation in error terms. Moran’s test of spatial 
correlation in the error terms report a value of 14.65, indicating the need to correct for spatial 
autocorrelation. Spatial standard errors are higher than those from least squared estimation, thus 
many explanatory will become less or insignificant. Increasing cutoff ranges will allow for the 
error terms to be more correlated with one another, thus increasing spatial errors’ standard 
deviation. Most variables remain significant with cutoff range of .1 degree. At cutoff range of .5 
degree, only maximum temperature and its squared term is significant. Perhaps the most 
interesting finding is that the number of days above 90oF remains significant, while using mean 
temperature isn’t after all. 

Column 4 is model with county fixed effects. There are reasons to think that county difference 
may be an input to permitting conversion such as difference in policy, existing farmland supply, 
or any unobserved county difference. The result is still very encouraging that max temperature 
and max temperature squared are significant with expected sign, same as the squared number of 
extreme heating days. Using mean temperature won’t be able to detect any effect of temperature 
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changes on conversion. Soil and other socio-economic variables are still significant as expected 
with the exception of precipitation and K-factor now insignificant in all models. 

To validate this result, instead of using max temperature or extreme heating days, I use a more 
agrarian approach to climate, degree days, to see how the conversion may be affected. Degree 
days is defined as the sum of degrees above a lower baseline and below an upper threshold 
during the growing season (Schlenker et al, 2006). With the lower bound set at 8oC and upper 
bound at 32oC, a day can contribute maximum up to 24 degree days unit. Crop growth needs 
certain amount of degree days, yet too much degree days may mean too warm condition and 
harmful effects expected. For temperature above 34oC, the effect is always harmful. Harmful 
degree days is the total number of degrees for any day which maximum temperature passed 34oC
threshold. 

 
Table 6 

Precipitation, Degree Days and Harmful Degree Days in California 
County Average, 50 Counties 

 
Variable Mean Std. Dev. Min Max 
Precipitation (cm) 68.0088 4.8512 62.1884 87.1772 
Degree Days (8-32oC) 2738.44 170.45 2421.77 3072.05 
Harmful Degree Days 
(34oC) 

2.3594 .2863 1.8008 2.9927 

Source: Schlenker et al (2006)10 

I replace my proposed climate variables with Schlenker et al (2006) data on precipitation, 
squared precipitation, degree days, squared degree days and the square root of harmful degree 
days, at every cell for each county using county fips code. Table 6 is a summary of Schlenker et 
al (2006) data, in county average over 50 counties in California. Validation result is shown in 
Table 7. It’s interesting that the result agrees perfectly with other models, and remains significant 
across all three specification checks. Since normal degree days has been shown to be positively 
related to farmland value, so it will help keep farm from converting. Yet too much degree days is 
bad and harmful degree days (34oC) too. Precipitation follows the same pattern. Note that the 
sign of population density is counterintuitive in the first two columns (robust standard errors and 
cutoff range of .1 degree), but no longer an issue at the cutoff range of .5 degree. At cutoff range 
of .5 degree, the result still holds for degree days and squared degree days. One reason to suspect 
harmful degree days isn’t significant is that there are very few observations and little variation of 
this variable, as acknowledged by Schlenker et al (2006).  

 

10 Available at http://www.columbia.edu/~ws2162/agClimateChange.html 
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These results confirm the proposition that maximum temperature or extreme heating days will 
accelerate farmland conversion. Although the models only explain a fraction of conversion 
pattern (R square is low, about 6% for models without fixed effects or roughly 25% for models 
with fixed effects), the most important result is that the effect is present and significant. 

 

CONCLUSION 
 

This paper presents a new approach to study the impact of climate changes on farmland 
conversion using climate extreme events instead of mean condition. This approach has been 
proved to better predict the impact of climate changes, especially when considering the impact of 
heating condition: using the number of days above 90o F or separating maximum and minimum 
temperature from average condition are both better predictors of the negative impact of excessive 
heating on farmland conversion. 

A conclusion specific to California agriculture is that there may be benefit, thus less farmland 
conversion, expected from mild climate changes. But excessive increase will be definitely 
harmful and drive more conversion away from farm production. This conclusion is also 
supported by a number of literatures about climate impact in California.  

This result is also significant in the sense that shifting the attention to the distribution of the tail, 
i.e. extreme events, can better estimate climate impact than using average condition. However, 
there are considerable difficulty in obtaining and analyzing the impact of extremes than changes 
in predictable mean values.  

There are several ways to improve the predictor of impacts to be considered in future study. 
Firstly, using temperature recorded during growing season only may be more relevant. This is 
not a problem for California, as growing season (from April to September) comes with most of 
the observed extreme heating days. However, application to other locations needs to take this 
into account. Secondly, the number of continuous heating days maybe more harmful than 
isolated events. Lateral damage (without considering the timing of extreme heating days) can 
still be mitigated in short term such as pumping more water, but not a solution if climate changes 
cause severe heating over a prolonged period. 
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APPENDIX 
 
FMMP Farmland Classification 
 
Prime Farmland has the best combination of physical and chemical features able to sustain 
long-term agricultural production. This land has the soil quality, growing season, and moisture 
supply needed to produce sustained high yields. Land must have been used for irrigated 
agricultural production at some time during the four years prior to the mapping date. 
 
Farmland of Statewide Importance is similar to Prime Farmland but with minor shortcomings, 
such as greater slopes or less ability to store soil moisture. Land must have been used for 
irrigated agricultural production at some time during the four years prior to the mapping date. 
 
Unique Farmland consists of lesser quality soils used for the production of the state's leading 
agricultural crops. This land is usually irrigated, but may include non irrigated orchards or 
vineyards as found in some climatic zones in California. Land must have been cropped at some 
time during the four years prior to the mapping date. 
 
Farmland of Local Importance is land of importance to the local agricultural economy as 
determined by each county's board of supervisors and a local advisory committee.  
 
Grazing Land is land on which the existing vegetation is suited to the grazing of livestock. This 
category was developed in cooperation with the California Cattlemen's Association, University 
of California Cooperative Extension, and other groups interested in the extent of grazing 
activities. 
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Urban and Built-up Land is occupied by structures with a building density of at least 1 unit to 
1.5 acres, or approximately 6 structures to a 10-acre parcel. Common examples include 
residential, industrial, commercial, institutional facilities, cemeteries, airports, golf courses, 
sanitary landfills, sewage treatment, and water control structures. 
 
Other Land is land not included in any other mapping category. Common examples include low 
density rural developments; vegetative and riparian areas not suitable for livestock grazing; 
confined animal agriculture facilities; strip mines, borrow pits; and water bodies smaller than 40 
acres. Vacant and nonagricultural land surrounded on all sides by urban development and greater 
than 40 acres is mapped as Other Land. 
 
Water - perennial water bodies with an extent of at least 40 acres. 
 

Soil Characteristics and Implication on Farming Activities (US Soil Data View 
2.1) 
 
Available Water Capacity (AWC) refers to the quantity of water that the soil is capable of 
storing for use by plants. The capacity for water storage is given in centimeters of water per 
centimeter of soil for each soil layer. The capacity varies, depending on soil properties that affect 
retention of water. The most important properties are the content of organic matter, soil texture, 
bulk density, and soil structure, with corrections for salinity and rock fragments. Available water 
capacity is an important factor in the choice of plants or crops to be grown and in the design and 
management of irrigation systems. It is not an estimate of the quantity of water actually available 
to plants at any given time. 
 
Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil 
transmit water. The estimates are expressed in terms of micrometers per second. They are based 
on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated 
hydraulic conductivity is considered in the design of soil drainage systems and septic tank 
absorption fields.  
 
Percent Clay: clay as a soil separate consists of mineral soil particles that are less than 0.002 
millimeter in diameter. The estimated clay content of each soil layer is given as a percentage, by 
weight, of the soil material that is less than 2 millimeters in diameter. The amount and kind of 
clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb 
cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic 
conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount 
and kind of clay in a soil also affect tillage and earth-moving operations. 
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K-factor, whole soil: Erosion factor K indicates the susceptibility of a soil to sheet and rill 
erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) 
and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil 
loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on 
percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic 
conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher 
the value, the more susceptible the soil is to sheet and rill erosion by water. 

Depth to water table: "Water table" refers to a saturated zone in the soil. It occurs during 
specified months. Estimates of the upper limit are based mainly on observations of the water 
table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic 
features) in the soil. A saturated zone that lasts for less than a month is not considered a water 
table. 

Irrigation class: Land capability classification shows, in a general way, the suitability of soils 
for most kinds of field crops. Crops that require special management are excluded. The soils are 
grouped according to their limitations for field crops, the risk of damage if they are used for 
crops, and the way they respond to management. 

 In the capability system, soils are generally grouped at three levels-capability class, subclass, 
and unit. Only class and subclass are included in this data set. 

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers 
indicate progressively greater limitations and narrower choices for practical use. 
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Table 3. Using 30-year average max, min temperature and precipitation including squared terms 
for 2002 – 2006 conversion, t-value in bracket 

 

Variable No Spatial 
Correlation 

t-statistics, Corrected for Spatial Dependence 
(Conley’s Method) 

With County Fixed 
Effects 

Robust Standard 
Errors 
(Col 1) 

IDW Cutoff Range 
= .1 

(Col 2) 

IDW Cutoff Range  
= .5 

(Col 3) 

 
(Col 4) 

Max Temperature 2202.01 
(3.35)*** 

(2.40)** (1.65)* 1582.31 
(2.17)**

Max Temperature, 
squared

-.50  
(-3.33)*** 

(-2.37)** (-1.63)* -.30  
(-1.84)*

Min Temperature 243.06  
(3.03)*** 

(2.19)** (1.33) 137.39  
(.99)

Precipitation 6.72  
(1.96)** 

(1.37) (.85) 4.40  
(1.22)

Precipitation, squared -.0000486  
(-2.40)** 

(-1.68)* (-1.04) -.0000194  
(-1.12) 

Perimeter, 2002 -9.65  
(-8.67)*** 

(-6.39)*** (-3.41)*** -10.39  
(-9.33)*** 

Median Family 
Income, 2000 

-10.02  
(-5.23)*** 

(-3.67)*** (-2.33)** -6.60  
(-1.65)*

Population Density, 
2000

8.52  
(.75)

(.52) (.33) -20.83  
(-1.11)

Water Capacity 3814582  
(3.49)*** 

(2.50)** (1.66)* 1727221  
(2.08)** 

K Saturation 11675.32  
(3.46)*** 

(2.47)** (1.84)* 10508.2  
(3.29)*** 

Percent Clay 10623.35  
(2.44)** 

(1.73)* (1.50) 11549.2  
(2.23)** 

K factor -927405  
(-1.97)**

(-1.44) (-1.12) -526346  
(-1.30)

Irrigation Class 53252  
(5.07)*** 

(3.71)*** (2.43)** 23969  
(2.28)** 

Water Depth -1258.42  
(-1.31) 

(-1.34) (-1.21) -297.81  
(-.41) 

 
Constant -2686994  

(-3.21)*** 
(-2.32)** (-1.61) -2295537  

(-2.52)** 

F-stat 9.10   7.66 
Spatial Autocorrelation 
Coefficient (rho)

.69  
(32.28)*** 

.47  
(7.67)*** 

 

***, **, * symbols denote coefficient significant at 1%, 5% and 10% significance level, respectively 
 
Increasing cutoff range or placing less weight to distant observations will produce less spatial autocorrelation as expected in rho 
values. 
 



30 

Table 4. Using 25-year average number of days above 90F, min temperature and precipitation 
including squared terms for 2002 – 2006 conversion, t-statistics in bracket 

 

Variable No Spatial 
Correlation 

t-statistics, Corrected for Spatial Dependence 
(Conley’s Method) 

With County Fixed 
Effects 

Robust Standard 
Errors 
(Col 1)

IDW Cutoff Range 
 = .1 

(Col 2)

IDW Cutoff Range  
= .5 

(Col 3)
(Col 4) 

Number of Days above 
90F 

7344.3 
(3.50)*** 

(2.45)** (1.59) 3007.2  
(1.59) 

Number of Days above 
90F, squared 

-52.33  
(-3.65)*** 

(-2.57)** (-1.69)* -20.80  
(-1.79)*

Min Temperature 225.86  
(2.55)** 

(1.82)* (1.10) 208.67  
(1.24) 

Precipitation 8.46  
(2.45)** 

(1.71)* (1.05) 3.88  
(1.01) 

Precipitation, squared -.0000582 
(-2.77)*** 

(-1.94)* (-1.19) -.0000186  
(-.99) 

 
Perimeter, 2002 -9.33  

(-8.39)*** 
(-6.18)*** (-3.37)*** -10.19  

(-9.11)*** 

Median Family 
Income, 2000 

-7.99  
(-3.90)*** 

(-2.75)*** (-1.82)* -6.94  
(-1.71)*

Population Density, 
2000 

10.77  
(.96) 

(.66) (.40) -21.19  
(-1.06) 

Water Capacity 3789837  
(3.56)*** 

(2.56)** (1.69)* 1760094  
(2.12)** 

K Saturation 11436.6  
(3.47)*** 

(2.49)** (1.87)* 10394.8  
(3.27)*** 

Percent Clay 10526.3  
(2.46)** 

(1.76)* (1.59) 11779  
(2.29)** 

K factor -866496  
(-1.92)*

(-1.40) (-1.09) -467702  
(-1.16) 

Irrigation Class 49887  
(5.00)*** 

(3.70)*** (2.48)** 23793.6  
(2.24)** 

Water Depth -1317.30  
(-1.38) 

(-1.42) (-1.29) -244.75  
(-.34) 

Constant -677112  
(-2.11)** 

(-1.63)* (-1.18) -383493.6  
(-1.06)

F stat 8.99 7.56
Spatial Autocorrelation 
Coefficient (rho)

.45  
(7.28)*** 
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Table 5. Using 30- year average temperature and precipitation for 2002 – 2006 conversion,  
t-value in bracket 

 

Variable No Spatial 
Correlation 

t-statistics, Corrected for Spatial Dependence 
(Conley’s Method) 

With County Fixed 
Effects 

Robust Standard 
Errors 
(Col 1)

IDW Cutoff Range  
= .1 

(Col 2)

IDW Cutoff Range  
= .5 

(Col 3)
(Col 4) 

Mean Temperature 1566.23  
(3.13)*** 

(2.24)** (1.54) 969.94  
(1.60) 

Mean Temperature, 
squared 

-.48  
(-2.89)*** 

(-2.06)** (-1.40) -.20  
(-1.06) 

Precipitation 8.26  
(2.46)** 

(1.72)* (1.07) 4.99  
(1.38)

Precipitation, squared -.0000584  
(-2.92)*** 

(-2.05)** (-1.27) -.0000237  
(-1.37)

Perimeter, 2002 -9.55  
(-8.60)*** 

(-6.33)*** (-3.40)*** -10.39  
(-9.31)*** 

Median Family 
Income, 2000

-10.03  
(-5.21)*** 

(-3.66)*** (-2.32)** -6.50  
(-1.63)*

Population Density, 
2000

13.56  
(1.18)

(.82) (.51) -19.02  
(-1.02)

Water Capacity 3674447  
(3.38)*** 

(2.43)** (1.60) 1759850  
(2.11)** 

K Saturation 11330.9  
(3.40)*** 

(2.43)** (1.80)* 10323.3  
(3.24)*** 

Percent Clay 10614.3  
(2.44)** 

(1.73)* (1.49) 11515.8  
(2.24)** 

K factor -880764  
(-1.87)*

(-1.37) (-1.05) -517007  
(-1.27)

Irrigation Class 53029  
(5.09)*** 

(3.72)*** (2.43)** 24250  
(2.30)** 

Water Depth -1295.26  
(-1.35)

(-1.39) (-1.26) -269.30  
(-.37)

Constant -1415466  
(-2.81)*** 

(-2.08)** (-1.47) -1171114  
(-2.00)** 

F stat 9.67   8.02 
Spatial Autocorrelation 
Coefficient (rho) 

 .49  
(7.96)*** 
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Table 7. Validation with Schlenker at el. (2006) climate data for 2002 – 2006 conversion1

Variable No Spatial Correlation t-statistics, Corrected for Spatial Dependence (Conley’s Method) 
Robust Standard Errors 

(Col 1) 
IDW Cutoff Range  

= .1 
(Col 2) 

IDW Cutoff Range  
= .5 

(Col 3) 

Degree Days (8_32) 17141  
(3.60)*** 

(2.61)*** (1.74)*

Degree Days (8_32), 
squared 

-3.17  
(-3.61)*** 

(-2.62)*** (-1.76)*

Degree Days (34), square 
root 

-164748  
(-2.44)** 

(-1.86)* (-1.16) 

Precipitation 140167  
(2.28)** 

(1.68)* (1.21) 

Precipitation, squared -876.78  
(-2.09)** 

(-1.55) (-1.16) 

 
Perimeter, 2002 -9.32  

(-8.78)*** 
(-6.64)*** (-3.64)***

Median Family Income, 
2000

-6.91  
(-4.43)*** 

(-3.19)*** (-2.20)**

Population Density, 2000 31.82  
(2.23)** 

(1.71)* (1.10) 

 
Water Capacity 2908711  

(3.12)*** 
(2.24)** (1.48) 

K Saturation 9562.9  
(3.16)*** 

(2.26)** (1.71)*

Percent Clay 13173  
(2.85)*** 

(2.01)** (1.68)*

K factor -903759  
(-2.17)** 

(-1.59) (-1.23) 

Irrigation Class 54409  
(4.64)*** 

(3.43)*** (2.16)**

Water Depth -1431.4  
(-1.48)

(-1.51) (-1.34) 

 
Constant -2.82e+07  

(-4.14)*** 
(-2.97)*** (-1.88)*

F stat 9.43   
Spatial Autocorrelation 
Coefficient (rho) 

 .48 (7.64)***

1Note that Schlenker et al (2006) data is county average, so no county fixed effects model could be estimated as the county-level 
data already capture all other county effects, if had, on conversion.  
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Figure 2 – PRISM 30-year Climate Normals: Max and Min Temperature 
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Figure 7: Interpolation of the number of days above 90oF using Kriging and IDW method 

 


