DETERMINATION OF LEAST OBSERVATION TIME CLASSIFIED BY BASELINE GRADE ACCORDING TO GPS SATELLITE COMBINATION

Prof. Jongchool LEE and Hosik JANG, Korea

Key words: Positioning Error, Least Square Method, Relative Positioning, GPS Satellite Combination, Least Observation Time.

ABSTRACT

In the 20th century, there was a remarkable progress in survey instrument and technology powered by the development of scientific technologies. Precision positioning is now possible thanks to GPS (Global Positioning System), three dimensional positioning method using satellites. GPS receiver installed in the observation point and at least four satellites determine the three dimensional coordinates, therefore, disposition and number of the satellites and the baseline may affect the accuracy, and observational error often occurs.

This research is to see how earth surface position error changes according to the number and combination of observation satellites through relative location observation method. Least square method is used for position error analysis. It is to analyze what is the minimum observation time when limiting the position error.

1. INTRODUCTION

The most recent, rapid growth of telecommunication - skill, and a space technique bring remarkable development on a surveying instrument, and sector of surveying technique. It accelerates diversification, and a high level of survey such as GPS survey, the technique using the high resolution of satellite image, GPS technique. Especially, an application of GPS surveying instrument is enlarged more and more in the field of survey from new operation method, using instrument, information propulsion, a safety secure, correspondence to internationalization, and protection of nature environment point of view.

GPS stands for Global Positioning System. It sets up three dimension, which you want to observe, the latitude , the longitude , an altitude H, by positioning instrument. The units are degree, minute, second , and meter , and it is divided into point positioning which uses 1 receiver, and relative positioning which uses 2 receiver according to purpose of survey.

Method of base line measurement is that of static measurement applied to detailed control point observation. static observation has a problem with taking a lot of time in practical affair because observed time is not steady according to the distance. Accordingly, this research observes how earth surface position changes according to number, and combination of observation satellites through relative positioning, and analysis of positioning error uses the method of least squares. In this analysis effect, in case of setting limits to positioning error, It is to see how much of least observed time may be applied.

2. RELATIVE POSITIONING OF GPS

To use GPS phase observation formula, survey calculation is carried out with the data that records the number of returned wave phase received by GPS receiver.

The time of starting survey, the number of wave of carrier that is existed between a satellite and GPS receiver. Namely, phase number is called interger number. If you know this, it is possible to calculate a base-line vector at two point intervals by relative positioning.

The problem is that it is hard to count the number of wave because carrier is regular in a type of wave. Therefore, GPS survey calculation is fundamental to what kind of way, and the how little data it needs.

The method of relative positioning to calculate interger number are Single Difference, Double Difference, Triple Difference.

2.1 Single differenece

An error term of a satellite clock is eliminated by calculating phase survey formula of 1 satellite / 2 receiver or an error term of receiver clock is eliminated by calculating phase survey formula of 2 satellite / 1 receiver. An orbit error and tropospheric delay error can be reduced if the distance between two receiver is shorter than height of GPS satellite.

2.2 Double difference

Removing both receiver, and an error term of satellite clock by calculating more than two of single difference, and unknown term will just remain interger number, therefore survey calculation is carried out by an observation equation for 4 of satellites and 3 of double difference.

2.3 Triple difference

Triple difference that subtracts according to continuous time is lower than double difference on an accuracy because of poorness of substance of information. It is used to revise cycle slip which is generated in the middle of surveying. Cycle Slip comes from the case of passing through an obstacle like tree, an active action of ionosphere, or electronic wave obstacle in the area where lots of radio wave emits.

3. COMPUTATION OF OBSERVED VALUE BY THE METHOD OF LEAST SQUARES

3.1 Distance error-linear expression up to GPS satellite

In GPS positioning, To seek location of surveying position, position of coordinate $P_i(x_i, y_i, z_i)$, point P_i is decided as long as you know the distance from 3 of satellites at the least. But reach time should be observed exactly when the distance is measured by means of the reaching time of radio wave for distance calculation.

In general, satellite's clock and receiver's clock are accompanied with a little error. 4 of unknown $x_i, y_i, z_i, time(t)$, and clock error $\Delta \delta$, exist to eliminate them. To solve them, It needs positioning measured from 4 of satellite at the least. Therefore, positioning usually needs the minimum 4 of the satellite, and the relative equation shows as Eqs(1).

If distance from surveying point $P_i(x_i, y_i, z_i)$ to satellite j, time(t) is $\rho_j^i(t)$.

$$\rho_i^j(t) \equiv f(x_i, y_i, z_i)$$

= $\sqrt{\{(x^j(t) - x_i)^2 + (y^j(t) - y_i)^2 + (z^j(t) - z_i)^2\}}$ (1)

Supposing, point *P* is $P_i(x_{io}, y_{io}, z_{io})$ as an approximate value, an approximate distance $\rho_i^i(t)$ between surveying point and satellite is that.

$$\rho_{io}^{j}(t) \equiv f(x_{io}, y_{io}, z_{io})$$

= $\sqrt{\{(x^{j}(t) - x_{io})^{2} + (y^{j}(t) - y_{io})^{2} + (z^{j}(t) - z_{io})^{2}\}}$ (2)

Error Equation shows as Eqs(3).

$$x_{i} = x_{io} + \Delta x_{i}$$

$$y_{i} = y_{io} + \Delta y_{i}$$

$$z_{i} = z_{io} + \Delta z_{i}$$
(3)

where,

 $\Delta x_i, \Delta y_i, \Delta z_i$ are residual of x_i, y_i, z_i each. $f(x_i, y_i, z_i)$ is evolved Taylor, Eqs(4) because $\Delta x_i, \Delta y_i, \Delta z_i$ are very small amount in Eqs(1).

$$f(x_i, y_i, z_i) \equiv f(x_{io} + \Delta x_i, y_{io} + \Delta y_{io}, z_{io} + \Delta z_i)$$

=
$$f(x_{io}, y_{io}, z_{io}) + \frac{\partial f(x_{io}, y_{io}, z_{io})}{\partial x_{io}} \Delta x_i + \frac{\partial f(x_{io}, y_{io}, z_{io})}{\partial y_{io}} \Delta y_i + \frac{\partial f(x_{io}, y_{io}, z_{io})}{\partial z_{io}} \Delta z_i + \cdots (4)$$

This coefficient of development form term 2~4 from Eqs(2) turns as follow.

$$\frac{\partial f(x_{io}, y_{io}, z_{io})}{\partial x_{io}} = -\frac{1}{2} \times 2(x^{j}(t) - x_{io}) \times \left\{ (x^{j}(t) - x_{io})^{2} + (y^{j}(t) - y_{io})^{2} + (z^{j}(t) - z_{io})^{2} \right\}^{-\frac{1}{2}} = -\frac{x^{j}(t) - x_{io}}{\rho_{io}^{j}(t)}$$
(5)

$$\frac{\partial f(x_{io}, y_{io}, z_{io})}{\partial y_{io}} = -\frac{y^j(t) - y_{io}}{\rho_{io}^j(t)}$$
(6)

$$\frac{\partial f(x_{io}, y_{io}, z_{io})}{\partial z_{io}} = -\frac{z^{j}(t) - z_{io}}{\rho_{io}^{j}(t)}$$
(7)

Eqs(4) turns Eqs(8) by means of $\rho(t)$ corollary.

$$\rho_{i}^{j}(t) = \rho_{io}^{j}(t) - \frac{x^{j}(t) - x_{io}}{\rho_{io}^{j}(t)} \Delta x_{i} - \frac{y^{j}(t) - y_{io}}{\rho_{io}^{j}(t)} \Delta y_{i} - \frac{z^{j}(t) - z_{io}}{\rho_{io}^{j}(t)} \Delta z_{i}$$
(8)

On survey, supposing distance from surveying point *i* to satellite *j* is $R_i^j(t)$. $R_i^j(t)$ turns Eqs(9).

$$R_i^j(t) = \rho_i^j(t) + c\Delta\delta^j(t) - c\Delta\delta_i(t)$$
(9)

where

 $\rho_i^{j}(t)$: geometric distance between satellite and surveying point

c : the velocity of life

 $\Delta \delta_i(t)$: clock error of receiver I

 $\Delta \delta^{j}(t)$: clock error of satellite j

Eqs(10) may be gotten from Eqs(9), and (8)

$$R_{i}^{j}(t) - \rho_{io}^{j}(t) - c\Delta\delta^{j}(t) = -\frac{x^{j}(t) - x_{io}}{\rho_{io}^{j}(t)}\Delta x_{i} - \frac{y^{j}(t) - y_{io}}{\rho_{io}^{j}(t)}\Delta y_{i} - \frac{z^{j}(t) - z_{io}}{\rho_{io}^{j}(t)}\Delta z_{i} - c\Delta\delta_{i}(t)$$
(10)

Revision of satellite clock is monitored by a tracking station, and transmissive coefficient in the navigational message from the satellite can be revised by clock corrective equation. On account of this, value of the left side in Eqs(10) may be calculated. While, 4 of unknown $\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t)$ exist on the right side. It needs more than 4 navigational message from satellite to get them. Eqs(10) explains,

$$l^{j} = R_{i}^{j}(t) - \rho_{io}^{j}(t) - c\Delta\delta^{j}(t)$$

$$a_{xi}^{j} = -\frac{x^{j}(t) - x_{io}}{\rho_{io}^{j}(t)}, a_{yi}^{j} = -\frac{y^{j}(t) - y_{io}}{\rho_{io}^{j}(t)}, a_{zi}^{j} = -\frac{z^{j}(t) - z_{io}}{\rho_{io}^{j}(t)}$$

and, it can be expressed as follow.

$$l^{j} = a_{xi}^{j} \cdot \Delta x_{i} + a_{yi}^{j} \cdot \Delta y_{i} + a_{zi}^{j} \cdot \Delta z_{i} - c \cdot \Delta \delta_{i}(t)$$
(11)

3.2 Approximation of positioning value by the method of least squares

Because linear expression is possible $\Omega(\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t))$ are spreaded out as Eqs(12).

$$\Omega(\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t)) = \sum_{j=1}^n \left\{ l^j - a_{xi}^j \cdot \Delta x_i - a_{yi}^j \cdot \Delta y_i - a_{zi}^j \cdot \Delta z_i - c\Delta \delta_i(t) \right\}^2$$
(12)

The method of least squares seeks $\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t)$ by minimizing $\Omega(\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t))$ and assume a part differential $\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t)$ as 0, Thus

$$\frac{\partial \Omega(\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t))}{\partial \Delta x_i}$$

= $-2\sum_{j=1}^n a_{xi}^j (l^j - a_{xi}^j \cdot \Delta x_i - a_{yi}^j \cdot \Delta y_i - a_{zi}^j \cdot \Delta z_i + c\Delta \delta x_i(t)) = 0$ (13)

$$\frac{\partial \Omega(\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t))}{\partial \Delta y_i} = -2\sum_{j=1}^n a_{yi}^j (l^j - a_{xi}^j \cdot \Delta x_i - a_{yi}^j \cdot \Delta y_i - a_{zi}^j \cdot \Delta z_i + c\Delta \delta x_i(t)) = 0$$
(14)

$$\frac{\partial \Omega(\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t))}{\partial \Delta z_i}$$

= $-2\sum_{j=1}^n a_{zi}^j (l^j - a_{xi}^j \cdot \Delta x_i - a_{yi}^j \cdot \Delta y_i - a_{zi}^j \cdot \Delta z_i + c\Delta \delta x_i(t)) = 0$ (15)

$$\frac{\partial \Omega(\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t))}{\partial \Delta \delta_i} = 2c \sum_{j=1}^n (l^j - a_{xi}^j \cdot \Delta x_i - a_{yi}^j \cdot \Delta y_i - a_{zi}^j \cdot \Delta z_i + c\Delta \delta x_i(t)) = 0$$
(16)

After theorem of Eqs(13)~Eqs(16), regular equation may be Eqs(17)~Eqs(20).

$$\sum_{j=1}^{n} (a_{xi}^{j})^{2} \Delta x_{i} + \sum_{j=1}^{n} a_{xi}^{j} a_{yi}^{j} \Delta y_{i} + \sum_{j=1}^{n} a_{xi}^{j} a_{zi}^{j} \Delta z_{i} - c \sum_{j=1}^{n} a_{xi}^{j} \Delta \delta_{i}(t) = \sum_{j=1}^{n} a_{xi}^{j} l^{j} \quad (17)$$

$$\sum_{j=1}^{n} a_{xi}^{j} a_{yi}^{j} \Delta x_{i} + \sum_{j=1}^{n} (a_{yi}^{j})^{2} \Delta y_{i} + \sum_{j=1}^{n} a_{yi}^{j} a_{zi}^{j} \Delta z_{i} - c \sum_{j=1}^{n} a_{yi}^{j} \Delta \delta_{i}(t) = \sum_{j=1}^{n} a_{yi}^{j} l^{j} \quad (18)$$

$$\sum_{j=1}^{n} a_{xi}^{j} a_{zi}^{j} \Delta x_{i} + \sum_{j=1}^{n} a_{yi}^{j} a_{zi}^{j} \Delta y_{i} + \sum_{j=1}^{n} (a_{zi}^{j})^{2} \Delta z_{i} - c \sum_{j=1}^{n} a_{zi}^{j} \Delta \delta_{i}(t) = \sum_{j=1}^{n} a_{xz}^{j} l^{j} \quad (19)$$

$$\sum_{j=1}^{n} a_{xi}^{j} \Delta x_{i} + \sum_{j=1}^{n} a_{yi}^{j} \Delta y_{i} + \sum_{j=1}^{n} a_{zi}^{j} \Delta z_{i} - c \sum_{j=1}^{n} \Delta \delta_{i}(t) = \sum_{j=1}^{n} l^{j} \quad (20)$$

Then, a part of coefficient of $\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t)$ is expressed as type of $k_{m,n}(m, n = 1 \sim 4)$, and Eqs(17)~Eqs(20) can be Eqs(21).

$$k_{11}\Delta x_{i} + k_{12}\Delta y_{i} + k_{13}\Delta z_{i} + k_{14}\Delta\delta_{i}(t) = g_{1}$$

$$k_{21}\Delta x_{i} + k_{22}\Delta y_{i} + k_{23}\Delta z_{i} + k_{24}\Delta\delta_{i}(t) = g_{2}$$

$$k_{31}\Delta x_{i} + k_{32}\Delta y_{i} + k_{33}\Delta z_{i} + k_{34}\Delta\delta_{i}(t) = g_{3}$$

$$k_{41}\Delta x_{i} + k_{42}\Delta y_{i} + k_{43}\Delta z_{i} + k_{44}\Delta\delta_{i}(t) = g_{4}$$
(21)

From the forth dimensional simultaneous equation, $\Delta x_i, \Delta y_i, \Delta z_i, \Delta \delta_i(t)$ and x_i, y_i, z_i in Eqs(3) will be determined.

4. THE BETHOD OF SURVEYING

This research is that the control point being used at Pukyoung National University in Pusan was used, and observed point within the compass of distance 1km, 2.5km, 5km, 7.5km, 10km, 15km, 20km, was selected. as shown Figure 1.

The time of survey were 30, 60, 90, and 120 minutes and acquisition space of the data was 30 sec.

The distances of rapid static positioning were selected 1km, 2.5km, 5km, 7.5km, 10km, 15km as Method of static positioning, and the time of survey were 5, 10, 15, and 20 minutes and acquisition space of the data was 5 sec.

To combine GPS satellite, considering in case of being getting over 4each of satellites, Since it is possible to see selection of r units from n units as the combination on selecting r units without considering the order of n value from different satellite, the number of satellite which can be used may be increased.

For example, ${}_{4}C_{4} = 1, {}_{5}C_{4} = 5, {}_{6}C_{4} = 15$, and ${}_{7}C_{4} = 35, {}_{8}C_{4} = 70, {}_{9}C_{4} = 126$,

 $_{10}C_4 = 210$. In this research, We limit satellite combinations to total 7each, because of the situation of survey place, even we use 2 frequency GPS which is 8 channel. Shown Table 1.

Fig.1 A Map of GPS observation points

r n	4	5	6	7
4	1	5	15	35
5	-	1	6	21
6	-	-	1	7
7	-	-	-	1

Table 1. The number of combinations of satellite with the number of satellite.

Observed period of GPS is 0.5 Sidereal Day (about 11hours and 58 minutes), so It is 4 minutes faster in a day. We apply static positioning or rapid static positioning belong to relative positioning to observe the same time everyday, and altitude of receiver is 15 degree.

Accuracy is estimated as comparison of dimension of absolute observed error, and relative accuracy of distance X, and Y by relative positioning with 2 GPS receivers.

Received data is calculated by the method of least squares according to computer process.

5. ANALYSIS OF OBSERVED VALUE

5.1 Result of distance observation according to the number of satellite in static positioning

Allowable scope error limits absolute observed error to 5mm, and relative accuracy is shown Table 2.

Division	Control Point							
Division	First Grade	Second Grade	Third Grade	Fourth Grade				
Baseline	30~37(km)	10(km)	5(km)	2.5(km)				
Accuracy	1/1,000,000	1/500,000	1/200,000	1/100,000				

Table 2. Control point relative observation allowable error

If absolute observed error is limited to 5mm following satellite combinations in distance in static positioning, at the time of that satellite is 4 each, satisfied observation more than 120minutes within shorter than 2.5km, and when the number of satellite are 5, 6 is sufficient over 30 min within 1km, over 60min within 2.5km, and over 120min within 5km. In the case of more than 7, the time of observation needs over 30min within 1km, 60min within 2.5km, and 120min within 10km.

-	Time		1	fror of	Plane			5 84 1
Station	(min)	Baseline	х	Y	$\sqrt{y^2 + y^2}$	Z	3-D	L
	30	1185-4811	0.0117	0.0090	0.0131	0.0060	0.0145	1/90495
	-60	1185.4809	0.00277	0.0035	0.0051	0.0049	0.0071	1/232447
(Ilon)	90	1185.4813	0.0040	0.0046	0.0061	0.0046	0.0076	1/194341
	120	1185.4913	0.0035	0.0024	0.0005	0.0065	0.0073	1/338712
	30	2355.1928	0.0189	0.0105	0.0216	0.0051	0.0222	1/109037
в	60	2255.1891	0.0052	0.0090	6.0079	0.0062	0.0101	1/298125
(2.5km)	- 90	2255.1880	0.0067	0.0040	6.0078	6.0071	0.0106	1/301947
	120	2365.1871	0.0033	0.0032	0.0046	0.0091	0.0402	1/511997
	-30	5004.1092	0.0296	0.0348	0.0328	0.0134	0.8354	1/152564
C	- 60	5004,1037	0.00777	0.0070	0.0304	0.010T	0.8150	1/481164
(Skm)	- 90	5004.1000	0.0096	0.0052	0.0300	0.0309	0.0148	1/500410
	120	500410992	0.0045	0.0042	0.0062	0.0116	0.0131	1/807113
	30	7417.9942	0.0349	0.0398	0.0387	0.0355	0.0417	1/154679
D	-80	3417.9692	0.0071	0.0115	0.0135	0.0138	0.0193	1/549478
(7.5km)	90	3417.9630	0.0121	0.00773	0.0041	0.0127	0.0190	1/5298097
	120	7407.9990	0.0053	0.0053	0.0074	0.0135	0:0154	1/1002428
	30	10997.7208	0.0372	0.0080	0.0414	0.0075	0.0449	1/257674
R	60	10667.7157	0.00877	0.0020	0.0048	0.0030	0.03333	1/720798
(10km)	.90	10967.7824	0.0127	0.0123	0.0077	0.0129	0.0219	1.623997
	120	10667.7182	0.0057	0.0055	0.0079	0.0052	0.0171	1/1350344
	30	14832.9864	0.0404	0.0201	0.0451	0.0050	0.0490	1/120800
P	60	14802.9771	0.0103	0.0124	0.0060	0.0199	0.0256	1/521303
(15km)	- 90	14/02/9890	0.0101	0.0548	0.0179	0.00296	0.0303	1.939810
	120	14832.9780	0.0062	0.0062	0.0098	0.0167	6.0189	1/1985566
	30	20344.3478	0.0384	0.0450	0.0192	0.0254	0.0644	1/343655
G	60	20344.3358	0.0119	0.00296	0.0053	0.0150	0.0221	1/1329095
(20km)	- 90	201413081	0.0115	0.0118	0.0165	0.0135	0.0213	1/1252900
	1.00	CONTRACTORISTS.	0.0000	0.0007	0.0000	0.0479	0.0000	1.001.01.000

Table 3. Results of GPS observation using 4 GPS Satellites

able 4. Results of	GPS observatio	on using 5 GPS Satellites	i

	Time		1	Irrir of	Plane			(M. M
Station	(min)	Baseline	х	Y	$\sqrt{\chi^2 + \chi^2}$	Z	3-D	L
	30	1185.4813	0.0040	0.0034	0.0052	0.0052	0.0034	1/227977
A	60	1185.4823	0.0024	0.0030	0.0638	0.0640	0.0055	1/311969
(Ikm)	90	1185.4798	0.0031	0.00239	0.0042	0.0034	0.0054	1/382257
	120	1185.4798	0.0020	0.0019	0.0028	0.0032	0.0042	1/023386
	30	2355.1939	0.0053	0.0049	0.0072	0.0047	0.0086	1/327110
в	60	2055.1843	6.0003	0.0040	0.0052	0.0637	0.0054	1.9222820
(2.5km)	90	2355.1896	0.0029	0.0034	0.0045	0.0042	0.0090	1/52375
	129	2355.1896	0.0025	0.0025	0.0627	0.0642	0.0056	1.436537
	30	5004.1001	0.0109	0.0079	0.0135	0.0115	0.0176	1/370674
C	60	5004.1050	0.0058	0.0050	0.0077	0.0075	0.0108	1/649884
(Skel)	90	5004.0991	0.0055	0.0043	0.0070	0.0058	0.0091	1/714871
	139	5804.1007	0.0038	0.0035	0.0052	0.0048	6.0070	1.6622327
	30	7417.9654	0.0089	0.0080	0.0120	0.0130	0.0177	1/618064
D	60	7417.9675	0.0054	0.0059	0.0079	0.0085	0.0116	1/508083
(7.See)	- 90	7413.9677	0.0050	0.0057	0.0076	0.0079	0.0303	1/976847
	130	7417.9687	0.0048	0.0040	0.0062	0.00239	0.0096	1/1196445
-	30	100677.7211	0.0095	0.0092	0.0132	0.0643	0.0195	1/808161
Е	60	100877.7197	0.0063	0.0064	0.0090	0.0097	0.0132	1/1185302
(10km)	90	10667.7325	0.00622	0.9080	0.0086	0.0069	0.0110	1/1240434
	130	10667.7187	0.0048	0.0045	0.0005	0.0039	0.0089	1/3636821
	-30	14832.9822	0.0014	0.0104	0.0154	0.0158	0.0221	1/963181
F	-90	14832:9790	0.0069	0.0089	0.0058	0.0104	0.0143	1/1513969
(15km)	90	14832-9600	0.0082	0.0063	0.0103	0.0067	0.0123	1/3440095
	120	14832-9718	0.0647	0.0049	0.0068	0.0050	0.0090	1/2181319
	30	20344.3316	0.0278	0.0158	0.0320	0.0111	0.0339	1/635760
G	- 60	20344.3384	0.0070	0.0081	0.0107	0.0422	0.0362	1/1901340
(20km)	-90	20344.3428	0.0095	0.0097	0.0136	0.0110	0.0175	1/1485808
	120	30344.3311	6.0063	0.0061	0.0086	0.0077	0.0115	1/2969620

Table 5. Results of GPS observation using 6 GPS Satellites

Table 6. Results of	GPS of	servation using	7 GPS Satellites
---------------------	--------	-----------------	------------------

	Time		1	littor of	Plane			J X2 + 12		Tim
Station	(min)	Baseline	х	Ŧ	$\sqrt{\chi^2 + \chi^2}$	z	3-D	L	Station	tmin
	- 30	1185-4831	0.0038	0.9032	0.0048	0.0037	0.0062	1/346906		30
A	- 60	1185-4823	0.0821	0.0025	0.9003	0.0034	0.0047	1/358237	A	60
(Ikm)	90	1185.4790	0.0824	0.0025	0.0005	0.0029	0.0045	1/338706	(Ikm)	90
	120	1185-4797	0.0018	0.0019	0.0006	0.0027	0.0037	1/452954		120
	30	2355.1913	0.0042	0.0039	0.00077	0.0042	0.0071	1/413191		30
в	60	286.1839	0.0025	0.0035	0.0043	0.0032	0.0054	1/547717	8	60
(2.5km)	-90	2355.1881	0.0027	0.0030	0.0040	4.0030	0.0050	1/588797	(2.5km)	90
	120	2355.1963	0.0022	0.0024	0.00035	0.0030	0.0045	1/713688		120
	30	5004,1087	0.0059	0.0046	0.0075	0.0062	0.0097	1/907214		30
C	60	5004L1043	0.0044	0.0047	0.0064	0.0067	0.0083	1/781801	C	60
(Skm)	- 90	5004.0894	0.0051	0.0041	0.0065	0.0048	0.0081	1/760861	(Skm)	90
	120	5004.1005	0.0025	0.0034	0.0049	0.0038	0.0062	1/1821245		120
	- 30	7417.9728	0.0082	0.0072	0.0309	0.0094	0.0138	1/980548		30
D	60	7417.9704	0.0054	0.0056	0.0076	0.0064	0.0100	1/979049	D	60
(7.5km)	90	7417.9601	0.0044	0.0649	0.0066	0.0047	0.0081	1/1122903	(7.5km)	- 90
	120	7417.9590	0.0041	0.0038	0.0056	0.0044	0:0072	1/1324636		129
	- 30	10997.7234	0.0089	0.0078	0.0020	0.0080	0.0150	1/981630		30
8	60	10987.7154	0.0050	0.0057	0.0079	0.0877	00113	1/1350344	8	60
(30km)	90	10967.7327	0.0046	0.0048	0.0074	0.0049	0.0090	1/1441586	(10km)	90
	120	10967.7295	0.0038	0.0039	0.0061	0.0044	0.0076	1/1746908		130
	30	14832.9794	0.0100	0.0086	0.0132	0.0802	0.0396	1/1122711		30
- P -	60	14832.9804	0.0055	0.0062	0.0083	0.0090	0.0122	1/1787106	F	60
(15km)	90	14832.9764	0.0055	0.00257	0.0079	0.0055	0.0096	1/3877902	(15km)	90
	129	14832.9716	0.0044	0.0046	0.0064	0.0647	0.0090	1/2317652		130
	30	20344,3320	0.0144	0.0010	0.0080	0.0008	0.0211	1/1123996		30
G	60	20344.3430	0.0073	0.0084	0.0011	0.0027	0.0169	1/1802824	G	-60
(20km)	90	2014.3432	0.0077	0.0069	0.0103	0.0088	0.0135	1/1975179	(20km)	90
	120	20344.3307	0.0047	0.0050	0.0069	0.0062	0.0092	1/2948454		120

	Time		1	irror of	Plane			58418
Staban	(min)	Baseline	х	Y	$\sqrt{\chi^2 + \gamma^2}$	z	3-D	L
	- 30	1185.4841	0.0036	0.0633	0.0048	6.0033	0.0058	1/248076
A	60	1185,4893	0.0021	0.0824	0.0002	0.0030	0.0044	1/320485
(Ikm)	90	1185.4808	0.0022	0.0823	0.0032	0.0025	0.0042	1/376463
	120	1185.4806	0.0017	0.0017	0.0024	0.0026	0.0036	1/490950
	30	2355.1904	0.0041	0.0038	0.0056	0.0034	0.0065	1/428570
в	60	2255.1945	0.0034	0.0035	0.0639	0.0029	0.0049	1/903883
(2.5km)	- 90	2395.1885	0.0026	0.0027	0.0637	0.0029	0.0047	1/636537
	120	2355.1896	0.0021	0.0024	0.0032	0.0028	0.0043	1/735996
	30	5004.1062	0:0054	0.0041	0.0068	0.0058	0.0089	1/735898
C	60	5004.1046	0.0038	0.0045	0.0050	0.0050	0.0077	1/948153
(Skn)	90	5004.1082	0.0046	0.0038	0.0060	0.0048	0.0076	1/834017
	120	5004.1007	0.0003	0.0030	0.0045	0.0037	0.0058	1/1112022
	30	7417.9708	0.0060	0.0071	0.0107	0.0075	0.0431	1/99032998
D	60	7417.9195	0.0046	0.0054	0.0071	0.0063	0.0085	3/1044777
(7.Sea)	. 90	7417.9604	0.0042	0.0044	0.0062	0.0644	0.0075	1/1216059
	139	7417.9588	0.0035	0.0036	0.0050	0.0043	0.0057	1/14/0582
	30	10067.7355	0.0091	0.0079	0.0118	0.0089	0.0143	1/904045
в	60	10087.7263	0.0053	0.0058	0.0076	0.0080	0.0108	1/1403648
(10km)	90	10667.3411	0.0048	0.005/5	0.0006	0.0053	0.0082	1/1616334
	130	10667.7380	0.0043	0.0043	0.0054	0.00465	0.0070	1/1975587
	30	14832.9799	0.0098	0.0085	0.0130	0.0087	0.0156	1/1140068
F	60	14532.9964	0.0054	0.0061	0.0081	0.0084	0.0117	1/1830232
(15km)	90	14832-9757	0.0052	0.0052	0.0074	0.0053	0.0090	1/2004426
	130	14832.9715	0.0042	0.0041	0.0009	0.0846	0:0074	1/2514063
	30	30344.3317	0.0114	0.0058	0.0150	0.0054	0.0173	1/1356389
G	-60	20344.3361	0.0065	0.0080	0.0103	0.00775	0.0128	1/1975178
(20km)	90	20344.3436	0.0074	0.0067	0.0100	0.0085	0.0131	1/2034614
_	100	20344.3322	0.0045	0.0049	0.0067	0.0056	0.0087	1/3036467

5.2 Result of distance observation according to the number of satellite in rapid static positioning

Absolution observed error is limited to 5mm according to satellite combinations in distance in rapid static positioning, In case of 4 of satellite, the time of observation needs over 20min within 1km. in case of 5 of satellite, the time of observation needs over 10min within 1km, over 20min within 2.5km, and in the case of 6 of satellite, the time of observation needs over 15min within 1km,2.5km, over 20min within 7.5km.

	Time			Error of	Plane			12000	1000	Time		1	levor of	Plane			1.1.1
Station	(min)	Baseline	х	Y	$\sqrt{\chi^2 + \chi^2}$	z	3-D	L	Station	(min)	Baseline	х	Y	$\sqrt{y^2 + y^2}$	Z	3-D	E K+Y
	5	1185.4684	0.0347	0.0205	0.0825	0.0377	0.0495	1/36630		5	1085.5081	0.0073	0.0061	0.0095	0.0084	0.0127	1/134790
A	10	1185.4759	0.0061	0.0049	0.00718	0.00207	0.0125	1/151994	A	30	1185-4851	0.0049	0.0040	0.00053	0.0046	0.0078	1/188172
(Ikm)	15	1185.4752	0.0098	0.0084	0.0108	0.0083	0.0136	1/100366	(Tan)	35	1185-4798	0.0029	0.0026	0.0029	0.0035	0.0052	1/303969
	20	1385.4882	0.0038	0.0029	0.0054	0.0050	0.0074	1/229684		20	1185-4964	0.0031	0.0028	0.0042	0.0041	0.0059	1/282259
	5	2365.2518	0.2412	0.3105	0.3902	0.6100	0.7257	1/5990		5	2255.2077	0.0072	0.0034	0.0108	0.0111	0.0151	1/2294061
в	30	2355-2346	0.00000	0.0067	0.0057	0.0122	0.0122	1/243908	B	10	2355.2942	0.0050	0.0063	0.0080	0.0097	0.0126	1/254400
(2.5km)	- 85	285.2002	0.0066	0.0086	8010.0	0.0161	0.0094	1/218074	(2.5km)	15	2395.2028	0.0642	0.0040	0.0058	0.0057	0.0081	1/406069
	20	2255-2063	0.0054	0.0087	0.0102	0.0054	0.0030	1/230903		20	2355.2008	0.0827	0.0030	0.0040	0.0044	0.0059	1/588800
	5	5804.2770	0.2501	0.5087	0.5682	0.6880	0.8907	1/9807		-5	5004.0886	0.0007	0.0154	0.0188	0.0130	0.0228	1/996175
C	10	5004.1454	0.4405	0.02299	0.4435	0.1395	0.4821	1/11304	C	10	5004.0862	0.0075	0.0084	0.0113	0.0050	0.0344	1/642839
(Sen)	15	5003.6980	0.0077	0.0086	0.0135	0.0149	0.0188	1/435104	(Skm)	15	5004.0896	0.0055	0.0052	0.0076	0.0074	0.0306	1426400
	20	5004.0872	0.0081	0.0071	0.0108	0.0130	0.0154	1/463341		20	5004.0886	0.0040	0.0054	0.0067	0.0063	0.0092	1/749779
	5	7418.0451	0.3894	0.6924	0.7999	0.7012	1.0907	1/9820		5	7417.9892	0.0123	0.0176	0.0215	0.0138	0.0355	1/345023
D	10	7418.0339	0.4639	0.3250	0.9641	0.0038	0.8263	1/8977	D	10	3417.9048	0.0054	0.0086	0.0127	0.0112	0.0170	1/584(8)
(T.Sken)	15	7417.974B	0.0093	0.0085	0.0126	0.0137	0.0186	1/588928	(7.5km)	15	3417.9675	0.0044	0.0065	0.0070	0.0075	0.0003	1/3059710
	- 20	7417.9648	0.0080	0.0096	0.0126	0.0138	0.0186	1/588927		20	7417.9640	0.0042	0.0048	0:0064	0.0047	0.0079	1/1159057
	5	10667-8001	0.5803	0.8199	1.0195	0.7387	1.2463	1/30464		5	10967.5854	0.0054	0.0254	6.0271	0.5108	0.8244	1/203038
E	10	10967-9490	0.3899	0.4901	0.6296	0.4984	0.8028	1/349971	E	10	10667.6387	0.0104	0.0307	0.0149	0.0119	0.0090	1/715949
(Hiken)	15	10867.6463	0.0102	0.0105	0.0146	0.0144	0.0205	1/730861	(Hilan)	15	10967.6390	0.0073	0.0061	0.0005	0.0096	0.0136	1/1122908
	- 20	10967.6131	0.0128	0.0109	0.0167	0.0121	0.0205	1/638779		20	10907.6363	0.0052	0.0648	0.0071	0.0056	0.0090	1/1582494
	-5	14832.8603	0.6873	0.9440	1.1677	0.8685	1.4555	1/12708		5	14832.9764	0.0184	0.0265	0.0828	0.0229	0.0395	1/458225
F	10	1463.0425	0.4181	0.5055	0:6560	0.5685	0.8681	1/22611	F	10	14832.0010	0.0138	0.0126	0.0187	0.0150	0.0240	1/7903206
(ISkn)	15	140001.0090	8110.0	0.0340	0.0183	0.0157	0.0241	1/810547	(15km)	15	14832.9802	0.0076	0.0069	0.0103	0.0300	0.0144	1/140096
_	20	14802.9796	0.0131	0.0114	0.0174	0.0198	0.0041	1/852470		20	14822.9765	0.0062	0.0077	0.0000	0.0116	0.0452	1/1498390

Table 7 Barries of CDS observation using A CDS Satellines

	Time	Baseline	_	Error o	f Plane			J 10 . 10
Station	(min)		х	Y	1 22+ 10	Z	3-D	L
	5	1185-4996	0.00209	0.0051	0.0078	0.0063	0.0300	1/151907
A	10	1185.4847	0.0043	0.0034	0.0855	0.0842	0.0069	1/215043
(Ikm)	15	1385.4803	0.0028	0.0026	0.00238	0.0033	4.0051	1/311969
	20	1185-4918	0.0038	0.0025	0.0038	0.0034	0.0051	1/311972
	- 5	2205-2076	0.0062	0.0063	0.0088	0.0097	0.0132	1/367637
в	10	2355.2040	0.0047	0.0058	0.0075	0.0078	0.0008	1/314027
(2.5km)	15	2355.2037	0.0030	0.0035	0.0045	0.0048	0.0066	1/512001
	- 30	2355.2006	0.0024	0.00228	0.0037	0.0041	0.0855	1/636541
	5	5004.0815	0.0088	0.0088	0.0134	0.0105	0.0063	1/403555
С	30	5004.0890	0.0063	0.0063	0.0080	0.0072	0.0015	1/982257
(Ske)	15	5004.0890	0.0049	0.0049	0.0089	0.0089	0.0093	1/725230
	20	5004.0845	0.0038	0.0053	0.0065	0.0049	0.0082	1/36969
	5	3417.9824	0.0092	0.0405	0.0439	0.0084	8810.0	1/320066
D	30	3417.9757	0.0050	0.0009	0.0085	0.0079	0.0116	1/872783
(7.Sun)	15	3417.9682	0.0036	0.0044	0.0057	0.0062	0.0084	1/1301398
	20	3417.9671	0.0033	0.0040	0.0052	0.0042	0.0067	1/1420522
	5	10907.0471	0.0124	0.0433	0.0182	0.0170	0.0258	1/596136
Е	10	10867.6428	0.0082	0.0097	0.0120	0.0074	0.0141	1/989070
(10km)	- 15	10967.6442	0.0052	0.0055	0.0076	0.0055	0.0054	1/1403637
	20	10967.6857	0.0647	0.0041	0.0082	6.0049	0.0080	1/1220586
	5	14622.9725	0.0142	0.01996	0.0218	0.0176	0.0290	1/90412
F	10	14832.9643	0.0096	0.0403	0.0141	0.0117	0.0183	0/1050985
(15km)	15	14832.9875	0.0063	0.0005	0.0091	0.0090	0.0128	1/16299099
	20	14832.0740	0.0025	0.0085	0.0065	0.0094	0.0120	1/125056

Table 9. Results of GPS observation using 6 GPS Satellites

6. CONCLUSION

This research calculates dimension of observed error followed satellite combination in distance to determine least observed time of baseline classified followed GPS satellite combinations, and To get optimum observed time suited to fiducial point survey, the conclusions was taken as below by static positioning, and rapid static positioning.

- 1) When static positioning, and rapid static positioning belong to relative positioning were used, economic observed time to get sufficient data within sphere of critical allowable error came to reduced phenomenon by increasing the number of satellites or reducing length of base line when combined satellites.
- 2) When observed by static positioning, and rapid static positioning, practicality was estimated by analyzing the same amount of observed data, and observed error as a base, and accuracy using 2nd control point was confirmed by static positioning that survey for 30min, and It would be better to apply to detailed control point surveying.
- 3) Observed time of base line followed the number of satellite according to satellite combination of grade could be taken, in case of domestic GPS surveying applying to control point surveying.

CONTACT

Prof. Jongchool Lee Dept. of Civil Engineering Pukyong National University 100 Yongdang Dong Nam-Gu Pusan KOREA Tel. + 82 51 622 1662 E-mail: jclee@pknu.ac.kr

Hosik Jang Ph.D. Course Dept. of Civil Engineering Pukyong National University 100 Yongdang Dong Nam-Gu Pusan KOREA Tel. + 82 51 622 1662 E-mail: gpsjhs@mail1.pknu.ac.kr