Abstract

The UGRF which is Uganda's modernised geodetic datum is based on ITRF2005 epoch 2010.0. This geodetic datum is realised through the establishment of the 12 GNSS CORS network in the major cities or towns. This paper assesses the precision of this network in regards to latest released ITRF2020. Six (06) stations were randomly selected and investigated. The results indicate that there is urgent need for the upgrade of the datum to meet international standards.

ENHANCING GEODETIC CONTROLS FOR SECURE GEOSPATIAL DATA QUALITY AND INTEGRITY IN UGANDA

INTRODUCTION

Uganda's long historic geodetic reference datum has been the famous Arc1960 based on Clarke 1880 modified ellipsoid for the horizontal component. While for the vertical component Uganda still utilizes the mean sea level (MSL) derived from the so-called Khartoum Datum. However, a new reference system called the Uganda Geodetic Reference Network (UGRN) has been developed aligned to the <u>ITRF2005@2010.0</u>. In the effort to cope with the technological advancements, 12 Global Navigation Satellite System (GNSS) Continuous Operating Reference Stations (CORS) were installed in the first phase (IGN, 2011; IGNFI, 2019). The 12 GNSS CORS coordinates were computed as shown in Table 1, based on the ITRF2014 epoch 2019.21 (<u>ITRF2014@2019.21</u>) and transformed to UGRF using the 7 Helmert transformation parameters (IGNFI, 2019).

Now, a total of 38 CORS stations to make them 40 in number are being installed in the second phase. As alluded by (Christopher, 2006) the adoption of global terrestrial reference systems and frames allows countries to take advantage in consistency at a universal perspective. The global geodetic reference system is now the only fundamental recognized system and it was through a resolution by the International Union of Geodesy and Geophysics (IUGG) in 2007. The ITRF is supposed to be

Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591) UDGated III every 37-5 years, with the current updated version being ITRF2020 Ibrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda) (Zuheir, 2013). FIG Working Week 2024

Your World, Our World: Resilient Environment and Sustainable Resource Management for all Accra, Ghana, 19–24 May 2024

UGRN is considered as the most accurate, consistent and a lasting reference frame that is established and maintained by the Department of Surveys and Mapping (DSM), Ministry of Lands, Housing and Urban Development (MLHUD) (Bordas & Lacombe, 2021). This reference frame is to facilitate all aspects to do with spatial data in Uganda, which may include cadastral, engineering, geodetic, GIS, remote sensing, photogrammetry and other fundamental spatial datasets (Toko, Oput, Kagoro, Kambugu, & Magemeso, 2022).

Station	Latitude (⁰)	Longitude (⁰)	He (m)
ARUA	3.017143521	30.909914062	1208.8899
ENTB	0.059980991	32.476011896	1164.9160
FPRT	0.652455592	30.298304056	1522.1652
GULU	2.779525162	32.295855600	1099.0340
JING	0.418319436	33.213899857	1134.5039
KBLE	0.795187975	31.083240395	1334.4363
LIRA	2.247076555	32.901580766	1087.7116
MBAL	1.069771501	34.168688149	1117.0668
MRTO	2.531475711	34.657141630	1354.1900
MSKA	-0.338771247	31.719233545	1197.5288
MSND	1.686467071	31.717680214	1142.8215
SRTI	1.721941881	33.620010269	1111.3274

Table 1: Geographic coordinates of 12 GNSS CORS Sites at ITRF2005 epoch 2010.00(IGNFI, 2019)

GNSS and other modern geodetic technologies have completely revolutionized the way in which Geodetic control at international, regional and local levels can be achieved with capabilities without limitations in scales and everywhere. It is now a routine for all countries and of course regions to continuously revise and update their geodetic networks to benefit from the enormous benefits of ITRF latest editions such as the ITRF2020 edition. These benefits may include; high accuracy, ease in establishment and densification, and uniformity in accuracy at a global scale. The uniformity in accuracy is the most critical benefit that arises in alignment of geodetic control to the ITRF editions (Christopher, 2006).

The International Terrestrial Reference System (ITRS) is now the globally recognized principal geodetic coordinate system having been accepted by the International Union of Geodesy and Geophysics (IUGG). This ITRS is hypothetically fixed to the

Enhanzing vinge Fierthuandor uneque in the second provide the second provide the second provided and the second provided the s

conventions of the International Earth Rotation and Reference Systems Service (IERS) (Angermann, Pail, Seitz, & Hugentobler, 2022). Now, the ITRF2020 which is the latest model is urged as an improved terrestrial reference frame that truly and exactly models nonlinear station motions for both annual and semi – annual signals present in the station position time series and Post-Seismic Deformation (PSD) for sites that are impinged on by earth quakes. Four space geodetic techniques that is Doppler Orbitography and Radiopsoitioning Integrated by Satellite (DORIS), Global Navigation Satellite Systems (GNSS), Satellite Laser Raging (SLR) and Very Long Baseline Interferometry (VLBI) contributed to the realization of the ITRF (Angermann, Pail, Seitz, & Hugentobler, 2022). In summary long term periods of data were used ranging from 1993 up to 2021. The ITRF2020's accuracy and reliability has been assessed in contrast to the earlier editions such as ITRF2014, ITRF2008 and ITRF2005 and it was found to be within the levels of 5mm and 0.5mm/yr, respectively (Altamimi, Rebischung, Collilieux, Metivier, & Chanard, 2023).

Now, this paper assesses the performance of these 12 GNSS CORS UGRN stations using the free online Précised Point Positioning (PPP) services. For this specific paper 6 stations data was analyzed to test how they can be enhanced with ITRF2014 and most recent ITRF2020. Among the tools chosen were CSRS-PPP, AUSPOS, Trimble CenterPoint RTX, and APPS. The results were compared with the two reference reframes that is ITRF2014 and ITRF2020 depending on the capabilities of the tool or service used.

Materials And Methods

As stated above data from the 12 stations was collected from the UGRF website <u>http://ugrf.go.ug/SBC/User/Xpos/RinexDataRequest</u> for days 310, 311, 312, 313, 314, 315, 316, and 338. The screen shot of the interface is shown in Figure 1 All the 12 stations as indicated Table 1 are equipped with Leica GR50 receivers and Leiar20 Leim Antennas which provide cutting-edge technology for outstanding performance.

These receivers are enabled to collected all the four GNSS global constellations that's Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591) Ibracing (Ignor), RSS and Gatte Batte Batte (Iganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda)

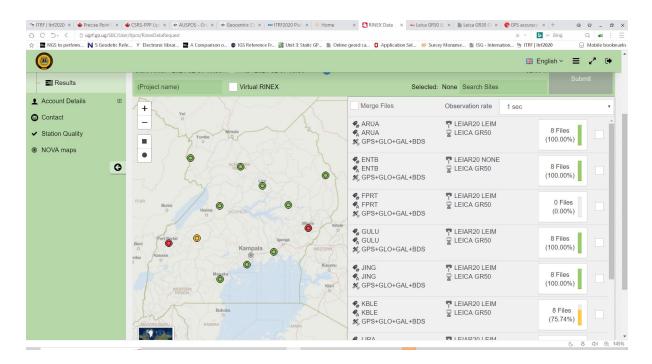


Figure 1 Screen shot of the UGRF Spider Business Centre Interface used to download the data.

The online tools that were used are briefly described below:

Trimble Center Point RTX service uses Trimble's global network of reference stations to compute precise satellite orbits and clocks (Trimble, 2024). This service is dual-frequency GNSS measurement processing service for static sessions with limitations of 1 hour up to 24 hours. It's reported that it can achieve an accuracy ranging from 2 to 6cm for horizontal and vertical coordinate values respectively. This Trimble service is discriminative in that it does not allow any antennas that not in its database (Nardo, et al., 2015).

Automatic Precise Positioning Service (APPS) accepts GPS measurement files and uses the most advanced positioning technology from the re-known NASA Jet Propulsion Laboratory (JPL). This APPS service can perform PPP of any GPS receivers whether they are in motion, static or even in air. APPS uses real-time, daily and weekly precise GPS orbit and clock products (JPL, 2024).

The Australian Positioning Service (AUSPOS) is an online GPS Processing Service <u>currently using version AUSPOS 2.4. AUSPOS uses the International GNSS Service</u> Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591) (IGS) products, that is the ultra-rapid, rapid, and final orbits contingent on their Ibrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Boseo Ogwang (Uganda) readiness during the time of processing (Geoscience, 2024). This service only admits to process dual frequency GPS phase data. The results or report as they call it is segmented into five sections that include; User Data, Processing Summary, Computed Coordinates, Ambiguity Resolution, and Computation Standards.

The modernized Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP) service provided freely by the Canadian Geodetic Survey of Natural Resources Canada. The modernization of CSRS-PPP as of Janu, 2018 involved mainly the inclusion of PPP with Ambiguity Resolution (PPP-AR). The other development was that all output solutions are based on International GNSS Service 2020 (IGS20) reference frame which is the actual realization of ITRF2020 (Canada, 2024). It's also worth to note the CSRS-PPP outputs, which include; solution report, summary file, position file, tropospheric zenith delay, Rinex_Clock format file, comma-separated format text file, JSON format residual file and an error file.

The GNSS observation files were selected in such a manner that only precise products are used during the processing with the online tool. Take not that these online tools have varying requirements in their processing strategy as shown in the Table 2. In all the processing the default settings were used without any alternations.

Strategy	APPS	CSRS-PPP	Trimble Center Point RTX	AUSPOS
Processing Mode	Static, kinematic	Static, kinematic	Static	Static
Frequency	Dual frequency	Singal, Dual	Dual frequency	Dual
		frequency		frequency
Software	GIPSY-OASIS v5	CSRS-PPP SPARK	8.5.1.20196	AUSPOS 2.4
		3.54.2		
Constellation	GPS	GPS + GLONASS	GPS + GLONASS	GPS
			+ Galileo	
Coordinate Frame	ITRF2014	IGS20/ITRF2020	ITRF2005 &	ITRF2014
			ITRF2014	
Ambiguity	Yes	Yes	No	Yes
Resolution (AR)				
Tropospheric delay	GMF: troposphere	Dry delay: Davis	NA	GMF mapped
model	mapping function	Wet delay: Hopf		with the
		MF: GMF		DRY-GMF.
Orbits source	JPL final	IGS and NRCan	Trimble	IGS

Table 2 Summary of key online tools processing strategies

Results and discussion

Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591) The results were produced and presented in tabular form for clear and elaborate Ibrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda)

presentation. The geodetic coordinates of the stations were computed from four FIG Working Week 2024

online processing tools that is Trimble CenterPoint RTX, APPS, CSRS-PPP and AUSPOS. Among these tools AUSPOS and Trimble CenterPoint RTX provide their results in ITRF2014 while APPS and CSRS-PPP have results in ITRF2020. The results are tabulated in Table 3 to Table 6.

DAY	SRTI	ARUA	MSND	MSKA	JING	ENTB
338	1.769442333	3.021410861	1.714693639	-0.387689583	0.433217889	0.149832917
	33.65013231	30.99910711	31.72683183	31.74236644	33.33902942	32.56014908
	1111.323	1208.912	1142.816	1197.513	1134.501	1164.853
316	1.769442694	3.021458250	1.714693889	-0.387689389	0.433218028	0.149832917
	33.65006958	30.99916983	31.72683183	31.7423665	33.33902906	32.56014919
	1111.341	1208.890	1142.823	1197.525	1134.510	1164.850
315	1.769442667	3.021458528	1.714693833	-0.387689167	0.433218	0.149833250
	33.65013164	30.99917003	31.72683156	31.74236622	33.33902881	32.56014900
	1111.340	1208.889	1142.819	1197.53	1134.510	1164.851
314	1.769442833	3.021458722	1.714694222	-0.387689222	0.433218056	0.149832944
	33.65013203	30.99916942	31.72683117	31.74236578	33.33902925	32.56014853
	1111.346	1208.897	1142.817	1197.527	1134.513	1164.817
313	1.769442694	3.021458472	1.714693972	-0.387689389	0.433217778	0.149833083
	33.65013219	30.99916944	31.72683161	31.74236617	33.33902906	32.56014900
	1111.340	1208.896	1142.820	1197.528	1134.516	1164.846
312	1.769442361	3.021458333	1.714693667	-0.387689444	0.43321775	0.149833028
	33.65013228	30.99917006	31.72683156	31.74236667	33.3390295	32.56014931
	1111.349	1208.897	1142.823	1197.523	1134.519	1164.873
311	1.769442639	3.021458278	1.714693611	-0.387689417	0.433217972	0.149833028
	33.65013200	30.99917006	31.72683178	31.74236619	33.33902886	32.56014931
	1111.338	1208.909	1142.831	1197.530	1134.515	1164.874
					_	
310	1.769442472	3.021458194	1.714693556	-0.387689667	0.433217861	0.149832750
	33.65013211	30.99916961	31.72683139	31.74236597	33.33902878	32.56014889
	1111.329	1208.892	1142.820	1197.525	1134.508	1164.840

Table 3 Trimble CenterPoint RTX (ITRF2014 @ Epoch 2023.92)

Table 4 APPS Solution ITRF2020 epoch 2023.9

Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591)MSNDMSNDIbrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda)3381.7219443933.0171459911.686469526-0.3387688430.4183219050.059983404

	00 (0001004	20.00001.000	01 717(0010	01 51000 ((5	00.01000000	00 45(01 405
	33.62001324	30.90991696	31.71768319	31.71923665	33.21390293	32.47601495
	1111.7337	1209.2888	1143.2244	1197.9281	1134.9095	1165.2604
316	1.721944368	3.017145977	1.686469493	-0.338768865	0.418321877	0.059983406
	33.62001322	30.90991692	31.71768317	31.71923664	33.21390292	32.47601494
	1111.7440	1209.3082	1143.2327	1197.9323	1134.9035	1165.2652
315	1.721944378	3.017145968	1.686469509	-0.338768835	0.418321893	0.059983401
	33.62001324	30.90991695	31.71768319	31.71923666	33.21390291	32.47601495
	1111.7358	1209.2964	1143.2125	1197.9394	1134.9159	1165.2547
314	1.721944371	3.017145969	1.686469500	-0.338768857	0.418321874	0.059983375
	33.62001323	30.90991695	31.71768315	31.71923664	33.21390293	32.47601494
	1111.7433	1209.3004	1143.2265	1197.9367	1134.9123	1165.2154
313	1.72194439	3.017145969	1.68646951	-0.338768838	0.418321898	0.059983411
	33.62001324	30.90991695	31.71768317	31.71923665	33.21390293	32.47601495
	1111.7365	1209.2904	1143.2197	1197.9312	1134.9159	1165.2471
312	1.721944385	3.017145981	1.686469499	-0.338768845	0.418321903	0.059983428
	33.62001325	30.90991694	31.71768318	31.71923666	33.21390294	32.47601496
	1111.7543	1209.3009	1143.2134	1197.9266	1134.9239	1165.2680
311	1.721944432	3.017146006	1.686469528	-0.338768822	0.418321918	0.059983432
	33.62001322	30.90991696	31.71768315	31.71923664	33.21390291	32.47601494
	1111.7412	1209.3059	1143.2153	1197.9283	1134.9179	1165.2631
310	1.721944421	3.017146001	1.686469537	-0.338768822	0.41832193	0.059983417
	33.62001322	30.90991696	31.71768318	31.71923665	33.21390293	32.47601494
	1111.7361	1209.2928	1143.2150	1197.9326	1134.9173	1165.2398

Table 5 AUSPOS V2.4 ITRF2014 solutions

DAY	SRTI		ARUA		MSND		MSKA		JING		ENTB								
338	1.769443444		3.171459167		1.715903611		-0.387688528		0.433218639		0.149833611								
	33.65013247		30.99916958		31.72683186		31.74236669		33.33902947		32.56014936								
	1113.456		1209.012		1142.947		1197.640		1134.633		1166.980								
316	1.7694435		3.021458944		1.714694583		-0.38768842		0.433218889		0.149833917								
	33.65013253		30.99916981		31.7268315		31.74236664		33.33902939		32.56014897								
	1113.471		1209.002		1142.941		1197.647		1134.638		1166.978								
Enhanc	ing G7694i l3©c	ntr	0 B.021\$5933 3G	eos	pat7a146246Q7ua	lity	and-In 2876688360	gar	da.433398972		0.149833889								
Ibrahim	Massors25Bi	chai	:cb0,999 6694£e	у Т	0 <u>89.(72688d2)2</u> (Çyr	l ROMIZ42F68892	an	d J9<u> </u>33902941O	gw	a1 32 (562912409) 5								
	1113.471		1209.019		1142.961		1197.664		1134.665		1166.976								
FIG Wo	orking Week 202	24			•			FIG Working Week 2024											

Your World, Our World: Resilient Environment and Sustainable Resource Management for all Accra, Ghana, 19–24 May 2024

314	1.769443556	3.021459167	1.714694750	-0.38768839	0.433219089	0.149833611
	33.65013211	30.99916917	31.72683122	31.74236628	33.33902894	32.56014969
	1113.477	1209.024	1142.954	1197.660	1134.642	1166.946
313	1.769443528	3.021459306	1.714694806	-0.38768853	0.433218889	0.149833889
	33.65013233	30.99916958	31.72683161	31.74236653	33.33902925	32.56014958
	1113.467	1209.01	1142.945	1197.650	1134.640	1166.961
312	1.769443444	3.021459417	1.714694694	-0.38768844	0.433218972	0.149833972
	33.65013236	30.99916972	31.72683169	31.74236639	33.33902931	32.56014925
	1113.479	1209.022	1142.951	1197.652	1134.655	1166.988
311	1.769443556	3.021459361	1.714694750	-0.38768836	0.433218833	0.149833639
	33.65013261	30.99916964	31.72683183	31.74236675	33.33902925	32.56014964
	1113.473	1209.024	1142.927	1197.655	1134.633	1166.985
310	1.769443694	3.021459111	1.714694806	-0.38768847	0.433218778	0.149833833
	33.65013211	30.99916922	31.72683153	31.74236625	33.33902906	32.56014911
	1113.460	1209.008	1142.94	1197.652	1134.632	1166.956

Table 6 CSRS-PPP 3.54.2 - ITRF20 (2023.9) solutions

DAY	SRTI		ARUA		MSND		MSKA		JING		ENTB
338	1.769443028		3.021459056		1.714694333		-0.38768881		0.433218556		0.149833611
	33.76679914		30.99916967		31.72683183		31.74236681		33.33902942		32.56014950
	1111.338		1208.903		1142.832		1197.529		1134.518		1164.872
316	1.769443139		3.021458861		1.714694278		-0.38768881		0.433218500		0.149833556
	33.76679900		30.99916958		31.7268315		31.74236658		33.33902933		32.56014922
	1111.336		1208.887		1142.831		1197.528		1134.517		1164.854
315	1.769443111		3.021459111		1.714694333		-0.38768867		0.433218583		0.149833694
	33.76679897		30.99916956		31.72683175		31.74236664		33.33902922		32.56014942
	1111.341		1208.902		1142.826		1197.533		1134.516		1164.854
314	1.769443222		3.021458944		1.714694417		-0.38768872		0.433218444		0.149833472
	33.76679911		30.99916961		31.72683172		31.74236664		33.33902942		32.56014961
	1111.350		1208.898		1142.829		1197.536		1134.521		1164.831
313	1.769443278		3.02145906		1.714691669		-0.38768864		0.433218361		0.149833778
	33.76679903		30.99916950		31.72683169		31.74236667		33.33902933		32.56014942
Enhanc	ing Geoddeti&4@o	ntro	ols foi l \$08.189 6G	eos	patia11 D42 a8 28 a	lity	and Iht97rft91in	Ug	anda (13552 0		1164.853
Ibrahim	Magemeso, Ric	har	d Oput, Godfre	yТ	oko (Uganda), C	yri	l Romieu (Franc	ce)	and John Bosco	Og	wang (Uganda)
312	1.769443167		3.02145922		1.714691669		-0.38768864		0.433218528		0.149833833
FIG Wo	orking Week 202	4									

	33.76679889	30.9991695	31.72683169	31.74236672	33.33902939	32.56014942
	1111.353	1208.896	1142.825	1197.525	1134.525	1164.871
311	1.769443417	3.02145900	1.714694250	-0.38768869	0.433218639	0.149833750
	33.75013217	30.99916939	31.72683156	31.74236644	33.33902939	32.56014922
	1111.345	1208.907	1142.830	1197.536	1134.518	1164.877
310	1.769443333	3.021459083	1.714694389	-0.38768878	0.433218722	0.149833611
	33.75013231	30.99916956	31.72683178	31.74236658	33.33902911	32.56014925
	1111.334	1208.895	1142.822	1197.532	1134.513	1164.843

From the above results the variations in the geodetic coordinates for the processed coordinates shows that there are huge differences most especially between UGRF and ITRF2020 as was expected. On the latitude and longitude, the differences are in the ranges of degrees to minutes while in the ellipsoidal heights the difference is in metres. This is really proof that the techniques used in the computation of ITRF are much better that those of ITRF2005 which the UGRN was based on.

Whereas with ITRF2014 the differences in the coordinate latitude and longitude are minimal as in that the differences are in minutes to seconds. For the ellipsoidal heights the difference between the heights was in millimeters. This shows that ITRF2005 and ITRF2014 were fairly close to each other. However, we have pointed out that the results that were produced from APPS shown a bigger difference as compared to those from the other tools yet all of them used the final satellites with the only difference in the combinations.

Conclusion

The paper assessed the performance of UGRF station geodetic coordinates using the four free online tools that's is APPS, CSRS-PPP, AUSPOS and CenterPoint RTX. Six stations were randomly picked and data for eight days processed. Seven consecutive days that is 310 to 316 then a distant day of 338.

The mean difference in the geodetic latitudes and longitudes is approximately 2 minutes in both while in the ellipsoidal heights it was 3.5m between UGRN and

Enhlit Rife 2020 le While rola cod Strere fices part la TRA 2014 ligand du GRNy it Weas dapper oximately in the Ibrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda)

regions of 3 minutes in the geodetic latitudes and longitudes, the for the ellipsoidal height difference was at 1cm.

With this it is imperative that UGRN geodetic reference of Uganda be enhanced to the ITRF2020 so that the reference frame is modernized just like what Canada and of course the National Spatial Reference System (NSRS) of National Geodetic Survey (NGS). UGRN should be consistent, accurate and up-to-date with the current developments with international standards.

Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591) Ibrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda)

References

- Altamimi, Z., Rebischung, P., Collilieux, X., Metivier, L., & Chanard, K. (2023). ITRF2020: An augmented reference frame refining the modeling of nonlienar station motions. *Journal of Geodesy*, 46-68.
- Angermann, D., Pail, R., Seitz, F., & Hugentobler, U. (2022). *Mission Earth Geodynamics and Climate Change Observed Through Satellite Geodesy.* Berlin: Springer-Verlag GmbH Germany.
- Bordas, T., & Lacombe, S. (2021, February 1). Establishing an Accurate Geodetic Reference Network for Uganda. *GIM International*, pp. 10-13.
- Canada, N. R. (2024, January 2). *Precise Point Positioning*. Retrieved from Natural Resources of Canada: https://webapp.csrs-scrs.nrcanrncan.gc.ca/geod/toolsoutils/ppp.php?locale=en&_gl=1*1dithac*_ga*ODAxNzk1MDYzLjE3MDc0M Dc3NDU.*_ga_C2N57Y7DX5*MTcwNzQwNzc0NC4xLjEuMTcwNzQwNzgw Ni4wLjAuMA..
- Christopher, J. (2006). *Geometric Reference Systems in Geodesy*. Columbus: Ohio State University.
- Geoscience, A. (2024). *AUSPOS GPS Processing Report.* Canberra: Geoscience Australia.
- IGN, F. (2011). Geodesy Report Zero Order Network. Kampala: MLHUD & PSFU.
- IGNFI, I. (2019). Uganda CORS Determination Report. Kampala: IGN FI IGN.
- JPL. (2024, January 2). *The Automatic Precise Positioning Service*. Retrieved from The Automatic Precise Positioning Service: https://pppx.gdgps.net/
- Nardo, A., Drescher, R., Brandl, M., Chen, X., Landau, H., Rodriguez-Solano, C., & Weinbach, U. (2015). Experiences with trimble center point RTX with fast convergence. *ESA European Navigation Conference (ENC2015)* (pp. 1-9). Bordeaux: Research Gate.
- Toko, G., Oput, R., Kagoro, G., Kambugu, W., & Magemeso, I. (2022). The Uganda Geodetic Reference Frame Network (UGRN) as a Back Bone of the National Geospatial Infrastructure in Uganda. *FIG Congress 2022: Volunteering for the future - geospatial excellence for a better living* (pp. 1-12). Warsaw: FIG Congress

^{2022.} Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591) Ibrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda)

- Trimble. (2024, January 03). *Trimble CentrePoint RTX Post-Processing*. Retrieved from TrimbleRTX: https://www.trimblertx.com/UploadForm.aspx
- Zuheir, A. (2013). Role and Importance of the International Terrestrial Reference Frame (ITRF) for science and positioning applications. *Exhange Forum* (pp. 1-18). Doha: IAG.

Enhancing Geodetic Controls for Secure Geospatial Data Quality and Integrity in Uganda (12591) Ibrahim Magemeso, Richard Oput, Godfrey Toko (Uganda), Cyril Romieu (France) and John Bosco Ogwang (Uganda)