National Geoder Sucrey Positioning America for the Future

geodesy.noaa.gov

Presented at the FIG Working Head Geodetic Leveling in the Modernized National Spatial Reference System

Ben Erickson

May 31, 2023 FIG Working Week 2023

geodesy.noaa.gov

Differential leveling

geodesy.noaa.gov

Topography

Differential leveling

Differential leveling

- Very accurate differential heights. Precision < 1 mm.
- Time consuming, expensive.
- For absolute positioning, starting heights must be known.

Current method:

- Start from passive bench marks with heights published in NGS's vertical datum, NAVD88.
- Establish heights on new marks via leveling.

geodesy.noaa.gov

geodesy.noaa.gov

Leveling today: assumptions

- Published marks are available near the project area.
 - Historic level lines must have been previously run.
- Mark still exists and is recoverable.
 - Marks are often lost or destroyed without being replaced.
- Mark has not moved.
 - Stability of setting, damage, subsidence, uplift.
- Published coordinates are accurate & consistent.
 - Coordinates may be "stale".

Leveling in the modernized NSRS

- Starting heights need not come from historic level lines.
- Most reliable source will be from new GNSS occupations of *primary control marks* included in the level survey.
 - Static, Real-Time Kinematic, Network RTK.
 - Obtain orthometric heights from GNSS ellipsoid height and high-resolution geoid model.

GNSS-derived orthometric heights

Primary control marks

- 3 marks minimum.
 - Provide access to NAPGD2022 orthometric heights.
- 30 km max distance.
- GNSS occupations to obtain coordinates at an epoch representative of the survey (e.g., the midpoint date).
 - 2 occupations minimum at the beginning of leveling.
 - 2 occupations minimum at the end of leveling.
 - For projects over 6 months, 2 occupations near the middle of leveling.

Additional marks for leveling

- Leveling-only secondary marks are set as needed for the project.
- Nominal spacing of 1-3 km for level lines.
- Double-run leveling (forward/backward) connects the primary marks to the other marks.

GNSS and leveling

GNSS-derived orthometric heights

Double-run leveling

Credit: Dan Gillins

Establishing heights

At the primary control marks:

- GNSS occupations are processed into NATRF2022 coordinates at the survey epoch.
- Coordinates combined with GEOID2022 to produce orthometric heights at the survey epoch.
- Orthometric heights used as vertical control for adjustment of the leveling data.

Establishing heights

- Uncertainties will be propagated through the processing sequence. Sources include:
 - σ_h from GNSS observations (cm level).
 - σ_N from GEOID2022 model (cm level).
 - $\sigma_{\Delta H}$ from leveling observations (mm level).
- In the adjustment, the controlling orthometric heights will float according to their uncertainties
 - Variance component model with stochastic constraints.

Establishing heights

- Per the weighting scheme...
 - Absolute accuracy is determined by the GNSS (network accuracy).
 - Relative precision of the leveling is maintained (local accuracy).
- Corrections are applied to leveling for systematic effects.
 - Astronomic, orthometric, gravity, atmosphere, instrument calibration.
- End result: adjusted orthometric heights for all points in the project at the survey epoch.

GNSS and leveling adjustment

GNSS and leveling adjustment

Conclusions

In the modernized NSRS:

- Leveling will remain the premier technique for obtaining accurate differential heights.
- Users will longer have to rely on historic passive control with coordinates that may be unsuitable.
- Users can establish new marks and starting coordinates tied to NAPGD2022 via GNSS wherever they like.

Conclusions

In the modernized NSRS:

- High-precision leveling can extend vertical control throughout the project area.
- NGS tools will process and adjust the data, providing orthometric heights, along with estimates of uncertainty.

Under development

- Software and tools for data processing.
- Integrating functionality into the OPUS software suite.
- Making adjacent projects at different epochs consistent.
- Updating formal documentation on leveling methodologies and GNSS control.

geodesy.noaa.gov

Thank you.