SIG WORKING WEEK 2023

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

and problem based learning in Heritage Tunnels North Derbyshire, UK

By Derek Spalton, Giacomo Anderson and Richard Self

G Working Wee

Diamond Sponsors

Protecting Our World, Conquering New Frontiers

Contents

- Background
- Aims and objectives
- Past practice and existing issues
- Developing a solution
- Practical teaching impact
- Conclusions

Protecting Our World, Conquering New Frontiers

Background

- Postgraduate field course in the Peak District
- Aim is to scan former railway tunnels along the Monsal Trail
- Trip allows students to have practical experience surveying real infrastructure
- Student cohorts lack experience using LiDAR

Protecting Our World, Conquering New Frontiers

Aims and Objectives

- To create a robust survey control system within a challenging environment
- To allow for different rates of progress in the field
- To develop problem-based learning practice

Protecting Our World, Conquering New Frontiers

Past Practice

- Tunnel scans allow students to monitor and assess the asset (ISO 55001)
- Steady pace of work due to tunnel alignment and length of working day
- Recent increase in international students with limited practical experience
- Slower progress and more issues compared to previous cohorts

Brotosting Our World Conguering New Frontie

Protecting Our World, Conquering New Frontiers

Problems with surveying the tunnels

- Poor lighting leading to issues with locating and sighting targets
- Refraction of LASER in curved tunnels
- Shorter target shots required to minimise atmospheric corrections (longer tunnels)
- Restrictions on creating stations and leaving equipment overnight
- Condensation on Lens and water

Protecting Our World, Conquering New Frontiers

Developing a solution

- Creation of fixed reference points within the tunnel
- Attempts to use flat targets fixed to the tunnel walls were partially successful
- Angle of incidence impacted the target measurements
- Clustered control led to poor degree of accuracy

Protecting Our World, Conquering New Frontiers

Developing a solution

- Working together with the Peak Parks Authority (PPA) to find a solution
- Use of small tiltable prisms
- Metal resumption points allow the temporary installation of prisms
- Located in the middle of the tunnel
- Prisms formed strong 3D control (vertical and horizontal)

Protecting Our World, Conquering New Frontiers

Developing a solution

Protecting Our World, Conquering New Frontiers

Practical teaching impacts

- Problem based learning (PBL)
- Students asked to plan solutions to control issues
- Students are shown the working solution and asked to identify benefits and limitations
- Assessment of the working range errors by running raw data reports

Chee Tor Tunnel Original Field Data			
	Working range error in mm		
Target	X plane	Y plane	Z plane
23	12.5	23.1	17.9
24	9.7	12.6	15.3
25	24.7	19.0	11.6
Litton Tunnel Test with Tilting Prisms			
	Working range error in mm		
Target	X plane	Y plane	Z plane
Test 3	1.5	0.8	2.2
Test 4	0.3	1.2	0.6
Test 5	1.9	0.0	2.1
Test 6	3.4	1.1	0.7

Protecting Our World, Conquering New Frontiers

Conclusions

- The working solution has improved problem solving skills and can be actively introduced into teaching sessions to enhance PBL
- Students can work at their own rate and continue data collection over multiple days
- PPA now have access to control measures with limited intrusion
- GNSS tagging and linking control to GNSS network could be evaluated with further research

Protecting Our World, Conquering New Frontiers

References

- Albourae, A. (2021) "Accuracy assessment of terrestrial laser scanning and digital close range potogrammetry for 3D Cultural Heritage." Available at: https://doi.org/10.32920/ryerson.14644533.
- Becerik-Gerber et al. (2011) Assessment of target types and layouts in 3D laser scanning for registration accuracy. Automation in Construction, 20(5), pp. 649-658.
- Gikas, V. (2012) "Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation," Sensors, 12(8), pp. 11249–11270. Available at: https://doi.org/10.3390/s120811249.
- Janus, J. and Ostrogórski, P. (2022) "Underground mine tunnel modelling using laser scan data in relation to manual geometry measurements," Energies, 15(7), p. 2537. Available at: https://doi.org/10.3390/en15072537.
- Jeong, J. and Kim, A. (2018) "Lidar intensity calibration for road marking extraction," 2018 15th International Conference on Ubiquitous Robots (UR) [Preprint]. Available at: https://doi.org/10.1109/urai.2018.8441893.
- Monsal Trail (no date) Peak District National Park. Available at: https://www.peakdistrict.gov.uk/visiting/places-to-visit/trails/monsaltrail (Accessed: November 22, 2023).
- Schulz, T. (2008) Calibration of a Terrestrial Laser Scanner for engineering geodesy. Zurich: ETH.

FIG WORKING WEEK 2023

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Thank you for listening

