FIG WORKING WEEK 2023

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Measurements

Rudolf Staiger

Diamond Sponsors

G Working W

Content

Introduction & Motivation

what is validation?

the difference between validation and calibration ?

The validation of tacheometric measurements

- the design
- the implementation
- results and lessons learned

Summary

vocabulary- quality of measurements

vocabulary-validation and calibration

holistic approach

like additional constant, scale factor, ...

Example for the validation of tacheometers for legal survey

North Rhine-Westphalia 17,6 Millions inhabitants 350 publicly appointed surveyors

There is no general law or regulation for surveying instruments in Germany

For legal surveying work each Office had to proof on a yearly base the functionality of the electronic distance measurement since 1985 equipment.

North Rhine-We

Germany

- only EDM-part is checked \rightarrow angles are not included
- the check was on a base line with pillars

Disadvantages

- components like the reflector rod, software, centering, or the operator himself are not part of the proof

Test field Bochum – geometrical lay out

2D- Test Field consisting of 9 ground control points

Nominal coordinates

- local coordinate system
- each coordinate σ < 1 mm

Test field Bochum Phase 1 – Free Station

Test field Bochum Phase 2 – Measure Polar Points

Test field Bochum Phase 3 – Comparison

simulation – geometry free station

simulation of the geometrical layout with MATLAB

results- 65 different measurements (validations)

	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Ρ	Q	R
1								Stat	ionierung im G			ierät					
2			dY	dX	dS	dY	dX	dS	dY	dX	dS	dY	dX	dS	dY	dX	dS
3	Instrument	Nr	Punkt-Nr.			Punkt-Nr.			Punkt-Nr.			Punkt-Nr.			Punkt-Nr.		
4			20		21			22			31			32			
5	Leica TCA 2003	1	-0,3	-0,1	0,3	-0,5	-0,2	0,5	-0,2	-0,1	0,2	-0,5	0,0	0,5	-0,2	-0,1	0,2
6	Leica TCA 2003	2	-0,4	-0,2	0,4	-0,5	-0,3	0,6	-0,2	-0,2	0,3	-0,4	0,1	0,4	-0,2	-0,1	0,2
7	Leica TCA 2003	3	-0,5	-0,3	0,6	-0,2	-0,2	0,3	-0,4	0,1	0,4	-0,2	-0,1	0,2	0,0	0,0	0,0
8	TCRP1205 (14L)	4	-0,2	-0,1	0,3	-0,2	-0,4	0,4	-0,5	-0,4	0,7	-0,3	0,0	0,3	0,0	-0,3	0,3
9	TCRP1205 (14L)	5	-0,2	0,2	0,3	-0,3	0,1	0,3	-0,3	-0,3	0,5	-0,1	0,0	0,1	0,0	-0,3	0,3
10	TCRP1205 (14L)	6	-0,3	0,0	0,3	-0,3	-0,2	0,3	-0,4	-0,4	0,6	-0,2	0,0	0,2	0,0	-0,3	0,3
11	TC1105 (14E)	7	0,0	-0,3	0,3	-0,4	-0,1	0,4	-0,8	-0,4	0,9	0,1	-0,5	0,5	-0,6	-1,0	1,1
12	TC1105 (14E)	8	0,1	-0,2	0,2	-0,2	-0,4	0,5	-0,8	-0,8	1,1	0,4	-0,2	0,4	0,1	-1,0	1,0
13	TC1105 (14E)	9	0,0	-0,2	0,2	-0,3	-0,3	0,4	-0,7	-0,6	1,0	0,3	-0,4	0,4	-0,3	-1,0	1,0
14	TC1105 (14E)	10	-0,3	0,1	0,3	-0,2	0,0	0,2	-0,5	0,4	0,6	0,0	-0,1	0,1	-0,1	-0,1	0,2
15	TC1105 (14E)	11	-0,5	0,6	0,8	-0,2	-0,2	0,2	0,1	0,2	0,2	-0,3	0,1	0,3	0,2	0,3	0,3
16	TCRP1203 (14F	12	-0,5	-0,3	0,6	-0,5	-0,2	0,5	0,6	0,5	0,7	-0,9	0,4	1,0	0,1	0,3	0,4
17	TCRP1203 (14F	13	0,0	0,1	0,1	-0,4	-0,6	0,7	-0,1	0,5	0,5	-1,1	0,4	1,1	0,1	0,3	0,4
18	TCR 1102 (14A)	14	-0,4	0,1	0,4	-0,4	0,0	0,4	-0,3	-0,1	0,3	-0,5	-0,3	0,6	-0,1	-0,2	0,3
19	TCR 1102 (14A)	15	-0,3	-0,1	0,3	-0,2	-0,2	0,2	0,0	0,3	0,3	-0,8	-0,2	0,8	-0,6	-0,3	0,7
20	TCRP 1205 (14L)	16	-0,4	-0,2	0,5	-0,5	-0,2	0,5	-0,3	-0,3	0,4	-0,5	0,0	0,5	-0,1	0,0	0,1
21	TCRP 1205 (14L)	17	-0,2	0,3	0,4	-0,4	-0,1	0,4	-0,3	-0,3	0,4	-0,4	0,2	0,4	0,0	0,1	0,1
22	TCRP 1205 (14L)	18	-0,4	-0,2	0,5	-0,5	-0,2	0,5	-0,3	-0,3	0,4	-0,5	0,0	0,5	-0,1	0,0	0,1
23	TCRP 1205 (14L)	19	-0,2	0,3	0,4	-0,4	-0,1	0,4	-0,3	-0,3	0,4	-0,4	0,2	0,4	0,0	0,1	0,1
24	TC 1102 (14B)	20	-0,1	-0,8	0,8	-0,5	-0,5	0,7	-1,0	-0,7	1,2	-0,3	-1,0	1,1	-0,1	-1,3	1,3
25	TC 1102 (14B)	21	0,2	-0,1	0,2	-0,9	-0,5	1,0	-0,5	0,1	0,5	0,1	-0,6	0,6	0,2	-0,7	0,7
26	Leica Viva TS 15 I 3	22	-0,3	-0,3	0,4	-0,5	-0,4	0,6	-0,5	0,1	0,5	-0,1	0,2	0,2	0,1	-0,3	0,3
27	Leica Viva TS 15 I 3	23	-0,1	-0,2	0,2	-0,1	-0,3	0,3	-0,4	0,2	0,4	-0,2	0,0	0,2	0,0	-0,1	0,1
28	Trimble 3600 Serie	24	-0,6	0,4	0,7	-0,5	0,5	0,8	0,0	0,5	0,5	-0,4	0,5	0,6	0,1	0,7	0,7
29	Trimble 3600 Serie	25	-0,5	0,1	0,5	-0,4	0,0	0,4	-0,3	0,0	0,3	-0,4	0,0	0,4	-0,2	-0,1	0,3
30	Trimble 3600 Serie	26	-0,7	0,0	0,7	-0,7	0,0	0,7	0,2	0,5	0,5	-0,9	-0,2	0,9	-0,6	0,3	0,7
31	Trimble 3600 Serie	27	0,0	0,0	0,8	0,0	0,0	0,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
32	Trimble 3600 Serie	28	-0,6	0,8	1,0	-0,6	0,6	0,8	0,2	0,4	0,4	-0,3	0,8	0,9	0,2	0,7	0,7
33	Trimble 3600 Serie	29	-0,9	0,0	0,9	-0,5	-0,1	0,5	0,2	0,2	0,3	-0,7	0,6	0,9	-0,5	0,9	1,0
34	Leica 1203	30	-0,9	0,3	1,0	-1,0	0,2	1,0	0,3	0,7	0,8	-0,7	0,6	0,9	-0,2	0,9	0,9
35	Leica 1203	31	0,0	0,0	1,0	0,0	0,0	0,8	0,0	0,0	0,3	0,0	0,0	1,1	0,0	0,0	0,9
36	Leica 1103	32	-0,9	0,3	1,0	-1,0	0,2	1,0	0,3	0,7	0,8	-0,7	0,6	0,9	-0,2	0,9	0,9
37	Leica 1103	33	-1,0	0,1	1,0	-0,8	-0,3	0,8	0,3	0,0	0,3	-0,7	0,9	1,1	0,2	0,9	0,9

- 24	В	С	D	E	F	G	Н		J	K	L	М	Ν	0	Ρ	Q	R
1							Stationierung im Gerät										
2			dY	dX	dS	dY	dX	dS	dY	dX	dS	dY	dX	dS	dY	dX	dS
3	Instrument	Nr	Punkt-Nr.			Punkt-Nr.			Punkt-Nr.			Punkt-Nr.			Punkt-Nr.		
4			20			21			22			31			32		
38	Leica Viva TS 15 I 2	34	-0,6	-0,3	0,6	-0,4	-0,1	0,4	0,0	-0,6	0,6	-0,1	1,3	1,3	0,7	0,2	0,7
39	Leica Viva TS 15 I 2	35	-0,6	-0,3	0,6	-0,4	-0,1	0,4	-1,0	0,1	1,0	-0,6	-0,6	0,9	-1,1	-0,2	1,1
40	Topcon GTS-801 A	36	0,8	-0,7	1,1	0,5	-1,1	1,2	-1,1	-1,9	2,2	0,8	-0,6	1,0	0,7	-1,5	1,7
41	opcon GTS-801 A	37	0,0	0,0	0,6	0,0	0,0	0,4	0,0	0,0	1,5	0,0	0,0	1,3	0,0	0,0	1,9
42	Topcon GTS-8203 /	38	0,5	0,0	0,5	-0,5	-0,1	0,5	-1,7	-0,2	1,7	0,1	-0,8	0,8	-0,3	-1,7	1,8
43	Topcon GTS-8203 A	39	0,6	-0,8	1,0	0,0	-1,1	1,1	-1,6	-1,3	2,1	0,0	-0,7	0,7	-0,2	-1,7	1,7
44	Topcon GPT-9003/	40	-0,5	0,0	0,5	-0,5	-0,1	0,6	-0,3	0,3	0,4	-0,7	-0,2	0,7	-0,3	-0,3	0,4
45	Topcon GPT-9003/	41	-0,1	-0,6	0,6	0,0	-0,1	0,1	-0,2	-0,3	0,4	0,4	1,1	1,2	0,4	0,0	0,4
46	Mareite 1	42	-0,7	-0,7	1,0	0,0	-0,2	0,2	-1,8	0,3	1,8	-0,7	-0,2	0,7	-0,6	-0,3	0,7
47	Mareite 2	43	-0,2	-0,3	0,4	-0,1	-0,1	0,1	-0,1	-0,3	0,3	0,3	-0,3	0,5	0,0	-0,3	0,3
48	Mareite 3	44	0,1	-0,1	0,1	0,2	-0,3	0,4	-0,4	-0,1	0,4	-0,5	-0,1	0,5	-0,5	-0,1	0,6
49	Mareite 4	45	0,3	0,3	0,4	-0,1	0,2	0,2	-0,4	-0,1	0,4	-0,5	-0,3	0,6	-0,2	-0,2	0,3
50	Mareite 5	46	2,3	-0,7	2,4	0,3	0,7	0,8	-2,8	-0,9	2,9	1,6	-2,7	3,2	-0,6	-4,2	4,3
51	Mareite 6	47	1,8	-1,7	2,5	1,2	-2,5	2,8	-3,1	-2,0	3,7	0,4	-3,1	3,2	-0,6	-3,4	3,5
52	Mareite 7	48	0,0	0,1	0,1	-0,5	0,4	0,6	-0,5	0,3	0,5	-0,5	0,1	0,5	-0,1	0,1	0,2
53	Mareite 8	49	0,0	0,1	0,1	-0,4	0,1	0,4	-0,5	0,2	0,5	-0,5	0,1	0,5	-0,2	0,1	0,3
54	Mareite 9	50	-0,1	0,4	0,4	-0,5	0,2	0,5	-0,7	0,0	0,7	-0,5	0,1	0,5	-0,2	0,1	0,3
55	Mareite 10	51	0,1	0,2	0,2	-0,1	0,4	0,4	-0,4	0,2	0,4	-0,4	0,1	0,4	-0,5	-0,1	0,6
56	Mareite 11	52	0,0	0,0	0,0	-0,1	0,2	0,2	-0,3	0,3	0,4	-0,5	-0,2	0,5	-0,5	-0,2	0,6
57	Leica Viva	53	-0,6	-0,1	0,6	-0,5	-0,1	0,5	0,0	0,2	0,2	-0,7	-0,1	0,7	-0,6	0,1	0,7
58	Leica Viva	54	-0,5	0,1	0,5	-0,6	0,0	0,6	-0,5	-0,2	0,5	-0,6	0,6	0,8	0,1	-0,3	0,3
59	Leica 1203	55	0,1	-0,3	0,3	-0,7	0,1	0,7	-0,8	-0,1	0,8	0,0	-0,7	0,7	-0,5	-0,9	1,1
60	Leica Viva	56	-0,7	0,4	0,8	-0,7	0,5	0,8	0,1	0,5	0,6	-1,1	0,6	1,2	-0,6	0,9	1,1
61	Leica Viva	57	-0,8	0,2	0,8	-0,3	-0,1	0,3	0,3	-0,2	0,4	-0,4	1,0	1,1	0,5	0,6	0,8
62	Leica 1203	58	-0,7	0,4	0,8	-0,5	0,1	0,5	0,1	0,6	0,6	-1,1	0,5	1,3	-0,6	0,9	1,1
63	Leica 1203	59	-0,7	0,2	0,7	-0,3	0,0	0,3	0,5	0,3	0,5	-0,6	1,0	1,2	0,3	0,9	1,0
64	Trimble 3603	60	-0,5	0,3	0,5	-0,6	0,1	0,6	-0,4	0,2	0,4	-0,9	0,1	0,9	-0,5	0,4	0,6
65	Trimble 3603	61	-0,4	0,2	0,5	-0,3	-0,1	0,3	0,1	-0,3	0,3	-0,1	0,4	0,4	0,3	0,1	0,3
66	Leica Viva Rund	62	0,0	-0,2	0,2	0,2	0,2	0,3	0,4	0,5	0,6	0,1	0,0	0,1	0,2	0,3	0,3
67	Leica Viva Rund	63	0,0	0,2	0,2	0,3	-0,2	0,4	0,4	-0,1	0,4	0,5	0,3	0,6	0,5	0,0	0,5
68		Nr	Pu	Punkt-Nr.		Punkt-Nr.			Punkt-Nr.			Punkt-Nr.			Punkt-Nr.		
69			20			21			22			31			32		

analysis – potential error sources?	Prisms	Constants [mm]	39		
1 Measurement evotem additional constant phase inhomogeneities	GPH1P	0.0			
scale factor centering cyclic errors	Circular prism GPR121/111	0.0			
2. environmental conditions air temperature air pressure air moisture	<mark>Miniprism</mark> GMP101	+17.5			
3. Observer (User) measurement reflector height / instruments height	Miniprism GMP111 GMP111-0	+17.5 0.0			
a. Measurements Centering horizontalisation	Reflective tape	+34.4			
b. Software Total Station Mis-Usage of the software	Flat prism CPR 105	+34.4	50 20		
for example: wrong additional constant	360° prism GRZ4	+23.1	86		
9 different prism types	360° prism GRZ122	+23.1	98 78		
5 different additional constants from 0 - 35 mm	360° Mini prism GRZ101	+30.0	<u>19</u>		

analysis

- real errors

The requirement was to "stay" within ± 1cm = ±10mm for all 5 polar points

The main reasons for failure were

- a bended or distorted reflector pole - wrong additional constant in the software

Modification of the procedure

1. check the additional constant between 2 points of the test field

IF successful continue with the full procedure

2a) Free Station

2b) Measure the Polar points

2c) Compare the measurements with the nominal values

Summary - 1

Since 5 years this procedure of "validation" is binding

- for all legally appointed surveyors +
- for all state surveying offices in North Rhine-Westphalia (Germany)

the pillar based calibration of EDM is no longer mandatory!

Today there are 14 different test fields (spread over the state) for Tacheometers and GNSS-rover systems available!

In addition there is a web based software - free of charge- available for the automatic processing including the generation of a certificate!

(trust)

Philosophy of the test procedure

- the nominal values are published (no secrets!)
- it is a self test

Summary - 2

Advantages of "Validation"

- Holistic approach

- complex systems can be checked

Thank you very much for your attention!

contact: rudolf.staiger@dvw.de

