

FIG WORKING WEEK 2023

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Guidelines for the Use of GNSS in Land Surveying and Mapping 3rd Ed - an Operational Best Practice Standard (12048)

Dr Chris Pearson

James Kavanagh

Gordon Johnston

BUILDING CAPACITY IN GEODETIC COMPETENCY (TS05G/10567) Commission: 5 Tuesday, 30 May 14:30–16:00 Taylor, Hilton/Waldorf

Use of GNSS in Land Surveying and Mapping

RICS Professional Standard 3rd Edition

From Newcastle. For the world.

Dr Christopher Pearson Prof Stuart Edwards Dr Nigel Penna

James Kavanagh

- Update and refresh existing 2nd edition guidance notes from 2010
- Condense guidance notes
- Ease navigation of document
- Develop a global, current, relevant and useful guidance notes applicable to varied users

Expert Peer Review & Endorsement

Paul Cruddace, FRICS (Ordnance Survey GB)
Barry Gleeson, FRICS (WSP)
Mark Greaves, MRICS (Ordnance Survey GB)
Richard Groom, FRICS (Consultant)
Dr. William Kelly, (Glasgow University)
Marcin Krzetowski, (Network Rail)
Mark Lawton, (Skanska)
Dr. Audrey Martin, FRICS (Technical University Dublin (TUD)
Duncan Moss, FRICS (Ordnance Survey GB)
Dr. Eugen Niculae, (Technical University Dublin (TUD)
Dr. James Turner, (HS2)

Plus feedback and comments from many more industry experts

Timeline

- Initial Review of 2nd edition
 - Single part document
 - Multi GNSS
 - PPP
- GEO Business 2021 Questionnaire survey
 - Improve navigation
 - New precision reference tables
 - Reduce coordinate transformation section

Timeline

- First draft of 3rd edition
 - Industry expert reviews
 - GEO Business 2022 presentation and feedback
 - Snake Projections
 - PPP-RTK
 - Extra experiments not possible

Timeline

- Second draft of 3rd edition
 - Further national industry
 expert reviews
 - 4 week open global consultation
- Final version
 - Editorial review

Role of GNSS in surveying

- Different GNSS constellations and frequencies
- Coordinate reference frames (WGS84, ITRS)
- Range of GNSS applications
- Working from the whole to the part
- Survey types
 - Control survey guidelines
 - Detail survey guidelines
 - Low precision positioning guidelines

Survey Methods

- Static Positioning
 - Static Baseline
 - Rapid Static
 - Static Network RTK
 - Precise Point Positioning (PPP)
- Kinematic Positioning
 - Relative Kinematic
 - PPP-RTK
 - Differential GNSS (DGNSS)
- Impact of Multi GNSS

Technique	Observations	Baseline length	Occupation time	Accuracy
Static baseline	Dual	20 km	>1 h	H 5 – 10 mm
	frequency	30 km	>2 h	V 10 mm
		50 km	>4 h	
		100 km	>6 h	
Rapid static	Dual	<10 km	>5 m (5 s or 10s	H 10 - 15 mm
	frequency		epoch rate)	V 10 – 20 mm
		<15 km	>15 m (5 s or	H 10 - 20 mm
			10s epoch rate)	V 20 – 30 mm
Static network	Dual	< 40km	2x >3 min	H 10 - 15 mm
RTK	frequency		separated by	V 15 – 30 mm
			>20 min	
PPP	Dual	N/A	24 h	H 10 mm
	frequency			V 10 – 15 mm
			6 h	H 15 mm
				V 15 – 25 mm
			1 h	H 50 mm
				V 60 – 100 mm

Table 1: Static positioning – potential accuracies in horizontal (H) and vertical (V). Accuracies are given as one sigma (σ)

Technique	Observations	Baseline length	Initialisation time	Accuracy
Relative	Dual	1 km	5 seconds	H 10 – 20 mm
kinematic	frequency	15 km	1 minute	V 15 - 30 mm
PPP-RTK	Dual	<50 km	5 minute	H 20 – 50 mm
	frequency	<250 km	20 minutes	V 30 – 60 mm
DGNSS	Dual	20 km	1 – 15 minutes	H 0.1 – 0.4 m
	frequency			V 0.2 – 0.8 m
	float			
	Phase			0.4 – 1 m
	smoothed			
	code			
	L1 code	100 km	1 minute	H 1 – 5 m
				V 2 – 7 m

Table 2: Kinematic positioning – Potential accuracies in horizontal (H) and vertical (V). Accuracies are given as one sigma (σ)

Survey Errors

- Satellite orbits and clocks
- Ionosphere refraction
- Tropospheric refraction
- Multipath
- Interference
- Antenna phase centres
- Vegetation cover

Coordinate Reference Systems

- Link to OS guide to coordinate systems in GB
- The geoid
- The ellipsoid
- Datums
- Map Projections
- Projection Coordinates
- Snake Projections
- Height Transformations
- Coordinate Transformations

Quality Assurance and Control

- Network Design
- Network Shape
- Linkage to national control
- Quality control of real-time systems
- Recording of field notes
- Office procedures

RICS

jkavanagh@rics.org

Questions

Comments

