28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Artificial Intelligence Techniques for Extracting Impervious Surface Areas from Satellite Imagery

Darion David Mahadeo

Department of Geomatics Engineering and Land Management The University of the West Indies St Augustine, Trinidad and Tobago

Working We

(TRINIDAD AND TOBAGO)

Diamond Sponsors

Destacting One World Comparing New Evention

Protecting Our World, Conquering New Frontiers

Outline of Presentation

- **Background** and **Motivation**
- **Research Problem**
- Basis for **solution**
- General Methodological Workflow (derived)

- □What our paper will **discuss**...
- □What our paper will **conclude**...

Justification and **Significance** of Research

Protecting Our World, Conquering New Frontiers

Urbanization and Impervious Surfaces

- Urbanization is a phenomenon that is globally growing at an accelerating rate
- Result in construction and development of Impervious Surfaces (IS)
- IS are artificial hard areas that does not allow water to seep into the ground and are recognized as "built-up", "developed" or "urban areas"

- IS are key quantifiable indicators of urbanization.
- IS information is important to assist in quantifying urbanization and have proper urban planning and environmental management.

Protecting Our World, Conquering New Frontiers

Direct Results of Urbanization

• Construction and development usually includes removal of the Earth's natural land covers which disturbs local ecological systems

Protecting Our World, Conquering New Frontiers

Small Island Developing States (SIDS)

- Small size and Remoteness
- Exposure to Global Environmental Changes
- "Hotspots" of Climate Change
- Emits the least carbon into the atmosphere
- Environmental and Socio-economic vulnerabilities for development challenges
- Currently less resilient and less prosperous than larger developed countries
- Limited Resources
- Struggling to meet Sustainable Development Goals
- Requires assistance from businesses, academia, and society.

Protecting Our World, Conquering New Frontiers

Caribbean SIDS

- Natural Disasters (Tropical Location)
- Low Elevations
- Difference in size, geology terrain, landscape, vegetation types
- "the highest debt percentage (76% of their GDP in 2014)"

 Poor Building and Infrastructural Development

- Unplanned
 Development in
 Urban
 Settlements

Geospatial Data and Resource Challenges

Protecting Our World, Conquering New Frontiers

<u>Research Problem:</u> How can we get Impervious Surface Area Information, needed to address the urbanization issues?

- We need imagery **data**....
- We need to extract the impervious surface features from the data – providing us information.....

Basis for Solution:

Open-source satellite imagery: Landsat 8 and Sentinel-2
 Artificial Intelligence for feature Extraction – Machine
 Learning and Deep Learning

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

General Methodological Workflow

NSPS

NTERNATIONAL FEDERATION OF SURVEYORS

ESRI's High resolution World Imagery

THE SCIENCE OF WHERE

Non-Urban/Un-Developed

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Classification Results: Statistics

Actual Labels	Predicte	d Labels	
	Impervious	Permeable	Confusion Matri
Impervious	TP	FN	
Permeable	FP	TN	

Landsat 8			Sentinel 2						
Method	ТР	TN	FP	FN	Method	ТР	TN	FP	FN
MLC	7481	715	190	1155	MLC	76802	5311	1470	2799
RF	8075	584	325	557	RF	77625	5071	1600	2086
SVM	8118	576	333	514	SVM	78420	5305	1470	1187
UNET	8047	588	318	588	UNET	64271	7250	395	14466

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Accuracy Measures and Assessment

Accuracy Assessment:

Precision = TP/TP+FP Recall = TP/TP+FN Accuracy = TP+TN/TP+FN+TN+FP F-score = 2 x recall x precision/recall + precision Mean intersection over union (MIOU) = TP/FP+FN+TP

AI Method	Satellite	Technique	Accuracy	MIOU	F-Score	Recall	Precision
Machine Learning	Landsat 8	MLC	0.8590	0.8476	0.9175	0.8663	0.9752
		RF	0.9076	0.9015	0.9482	0.9355	0.9613
		SVM	0.9112	0.9055	0.9504	0.9405	0.9606
	Sentinel-2	MLC	0.9506	0.9473	0.9730	0.9648	0.9812
		RF	0.9573	0.9547	0.9768	0.9738	0.9798
		SVM	0.9692	0.9672	0.9833	0.9851	0.9816
Deep Learning	Landsat 8	U-Net	0.9050	0.8988	0.9467	0.9319	0.9620
	Sentinel-2	U-Net	0.8280	0.8122	0.8964	0.8163	0.9939

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Discussed Points in our paper

- What data was needed?
- How data was acquired?
- Why and what Al image classification techniques were chosen?
- Steps of Data Processing?
- Suitable accuracy measures adopted?
- How was accuracy measured?
- Performance of Al techniques
- Importance of Research and relevance of addressing urbanization issues.

Protecting Our World, Conquering New Frontiers

<u>Concluded</u> points in our paper

- ✓ References to key journal articles and papers used
- ✓ Suggestion on **software consideration**
- ✓ Revealing the technique with the **best performance**
- ✓Comments on AI (machine learning and deep learning)
- ✓ Suggestion on **enhancing** results for **unique** environments
- ✓ Recommendations

Protecting Our World, Conquering New Frontiers

The End – Check out our paper!!!

Artificial Intelligence Techniques for Extracting Impervious Surface Areas from Satellite Imagery (Paper ID: #12090)

Darion D. Mahadeo and Raid Al-Tahir

Department of Geomatics Engineering and Land Management

The University of the West Indies St Augustine, Trinidad and Tobago

