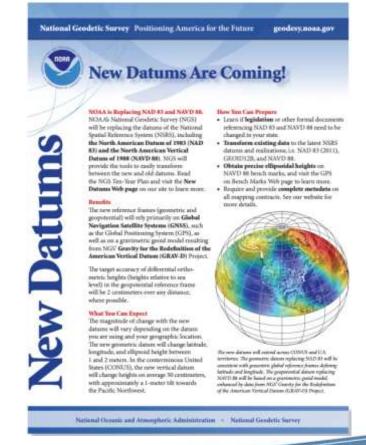


Reference System Modernization in Canada

Brian Donahue Geodetic Services Manager Canadian Geodetic Survey, Surveyor General Branch, Natural Resources Canada

FIG Working Week 2023 May 29, 2023

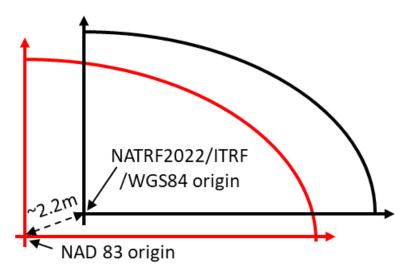
Presented at the FIG Workh, and a second at the Presented at the President at the President at the Presented at the Presented


Outline

- Overview of the Canadian Spatial Reference System (CSRS) modernization plan
- Improved geometric reference system NATRF2022
- Updated realization of the vertical datum CGVD2013
- Modernized Canadian Geodetic Survey tools and services
- Reference frame roles and responsibilities in Canada

Canada is planning to modernize their spatial reference system in 2025

- As part of this plan we will replace **NAD83** with a new geometric reference system called the North American Terrestrial Reference Frame of 2022 (NATRF2022)
- We will also update our realization of CGVD2013 with a new North American geoid model (GEOID2022) compatible with **NAPGD2022**
- These modernized systems are being developed as a collaborative effort between the U.S. and Canada

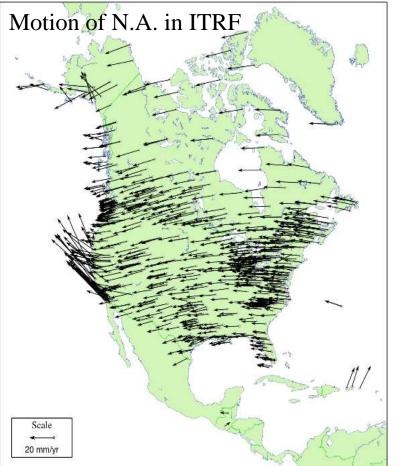

3

Vatural Resources Ressources naturelles Canada

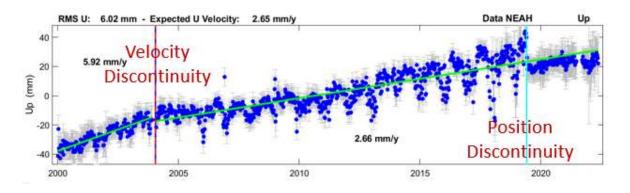
Canada

Rationale for CSRS modernization

- NAD83 is not a geocentric system as the origin is off by about 2.2m
 GNSS systems (e.g., GPS) and the ITRF are geocentric
- NATRF2022 better supports precise positioning from space (GNSS)
- Supports compatibility along the Canada / U.S. border and with international standards
- CSRS modernization also provides an opportunity to unify reference system adoption across Canada



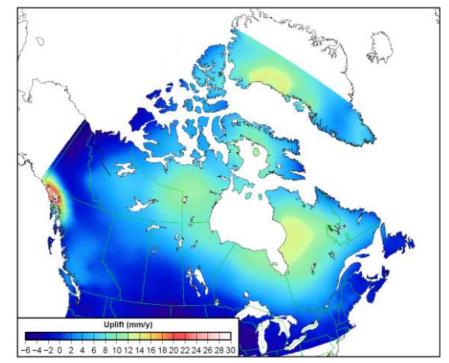
NATRF2022: An improved geometric reference system


- NATRF2022 will be equivalent to ITRF2020 at epoch 2020.0
- Frame will then be kept fixed to the North American plate using an accurate plate motion estimate
 - Defined as Euler pole parameters (EPP) and expressed as rotation rates about X,Y,Z axis
- Similar to the current NAD83(CSRS) definition with two significant improvements:
 - NATRF2022 will be geocentric at the cm level
 - Will have an improved plate motion model

NATRF2022: A dynamic reference system

- Earth is a dynamic planet and positions change in time
 - Can be due to dramatic events like earthquakes or subtle motions like glacial isostatic adjustment
- NATRF2022 will be realized by the coordinate functions of GNSS active and campaign stations
- Dynamic reference frames are adopted at a specific epoch (snapshot) in time and NATRF2022 will initially be adopted at epoch 2020.0

Maintaining accurate metadata is essential, indicating reference frames and epochs for all coordinates and geospatial files



NATRF2022: A dynamic reference system

NATRF2022 will also include an intra-frame deformation model (IFDM)

- Will account for any residual and/or local motions
- Derived from estimated coordinate functions
- Will be used for propagating coordinates to different epochs
- Will be included in CGS tools (CSRS-PPP and TRX)
- Initially (2025) IFDM2022 will use a similar model as the current NAD83(CSRS) national velocity model

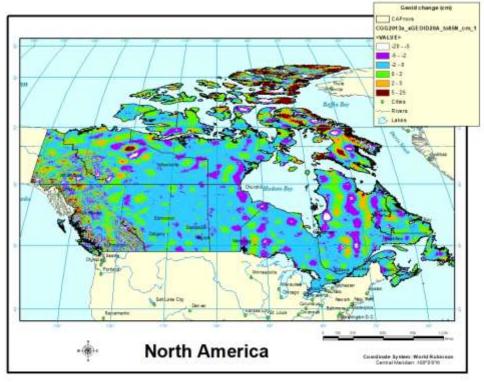
NAD83(CSRS) v7.0 vertical velocity model

Canada

CGVD2013 / NAPGD2022 Details

- Canada adopted a geoid-based vertical datum in 2013 called the Canadian Geodetic Vertical Datum of 2013 (CGVD2013)
- CGVD2013 and NAPGD2022 have the same definition ($W_0 = 62,636,856.0 \text{ m}^2\text{s}^{-2}$)
- CGVD2013 is currently realized by the CGG2013a geoid model but Canada plans to update this realization in 2025 using a common N.A. geoid model with the U.S. (GEOID2022)
- The only small difference is that NAPGD2022 plans to have a dynamic component to the geoid model while CGVD2013 will adopt only the static component

*



Practical impacts of CSRS modernization

 NATRF2022 and NAD83 will have an approximate 1-2 m 3D geometric position difference in Canada

• Latitude, longitude, ellipsoidal height

 The updated realization of the vertical datum, CGVD2013(GEOID2022), will cause orthometric height differences of up to several cm's in southern Canada

CGG2013a - xGEOID20A

NATRF2022 is the final step in the CSRS modernization

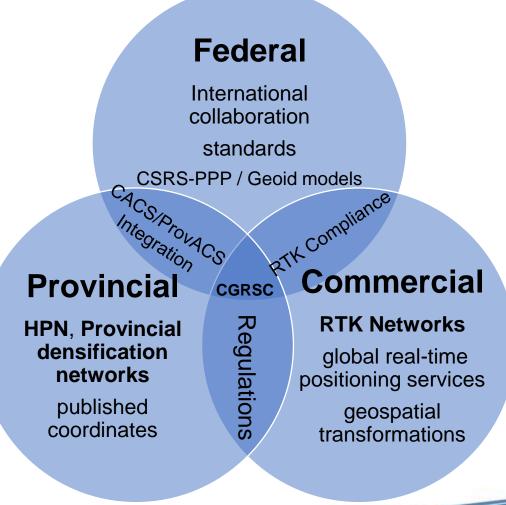
CSRS modernization

* Diagram is for illustration and is not comprehensive

Working in the modernized CSRS

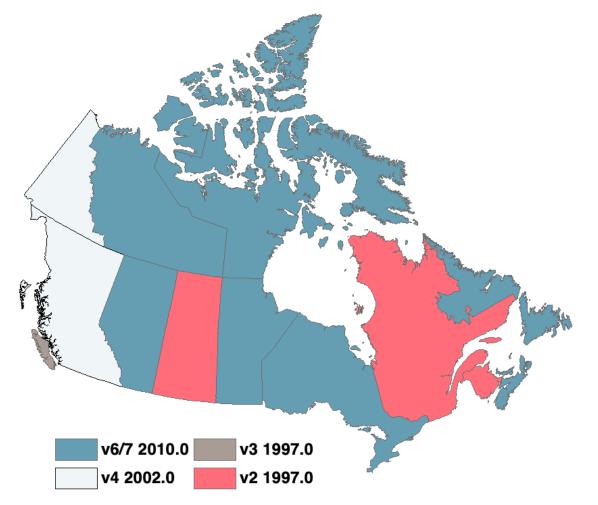
- By 2025, CGS will provide updated tools and data products to support users working in and migrating to the modernized CSRS including:
 - NATRF2022 coordinate functions for both public and commercial "compliant" ACS networks
 - The **CSRS-PPP** positioning service will be updated to provide solutions in NATRF2022 and CGVD2013(GEOID2022)
 - The coordinate transformation tool (TRX) will be updated to support NATRF2022 and the updated Canadian IFDM
 - The height conversion tool **(GPS-H)** will support GEOID2022 and a new standard geoid grid format (e.g., GGXF)
 - Updated geoid models, IFDM, and NAD83<->NATRF2022 transformation parameters will be available for download from CGS' website

Role of commercial geospatial software providers


- Users also need geospatial software tools to help them move to the new datums
 - Need to ensure commercial geospatial software is ready for NATRF2022 and CGVD2013/NAPGD2022
 - Need to support dynamic datums, IFDMs, and transformations
 - This will allow geospatial agencies to migrate existing NAD83(CSRS) geospatial data holdings to NATRF2022 epoch 2020
 - Examples:
 - Federal road network NAD83(CSRS) epoch 2010 -> NATRF2022 epoch 2020
 - Provincial cadastral fabric NAD83(CSRS) epoch 1997 -> NATRF2022 epoch 2020
- Alpha & Beta products need to be provided by CGS & NGS to help developers prepare

Geodetic services are a shared responsibility in Canada

- Defining the reference system is a federal mandate (NRCan/SGB/CGS)
- Provinces have the authority to regulate reference system usage in their jurisdictions
- Delivering the reference frame is coordinated through the CGRSC (Canadian Geodetic Reference System Committee), a subcommittee of the Canada Council on Geomatics


latural Resources Ressources naturelles Canada

Canada

Reference frame adoption in Canada

- Different NAD83(CSRS) versions across Canada
- Differences between versions and epochs that must be properly addressed
- Confusing when working across provinces and for commercial services

NATRF2022 is an opportunity for a common reference frame in Canada

Important takeaways

- CGS will adopt NATRF2022 and update CGVD2013 in parallel with the U.S. modernization in 2025
- Unified adoption of the modernized reference frames will enable efficiencies but require both geodetic and geospatial tools
 - CGS will provide the tools to update coordinates but will rely on commercial geospatial software to provide the tools for data layer migration
- CGS is working with the Canadian provinces to plan for a unified modernization sometime after 2025

Canada

We'd like to hear from you if you have feedback or questions regarding reference system modernization in Canada

CGS : geodeticinformation-informationgeodesique@nrcan-rncan.gc.ca

Thank you!

