SIG WORKING WEEK 2023

28 May - 1 June 2023 Orlando Florida USA

Protecting Our World, Conquering New Frontiers

Concepts for Optical- and Acoustic-Based Odometry and

SLAM for Underwater Navigation

Lukas Klatt, Niklas Schild, Prof. Harald Sternberg

HafenCity Universität Hamburg

Working W

Protecting Our World, Conquering New Frontiers

Gliederung

- Introduction
- Challenge and general idea
- Conceptual approach
- Outlook

Protecting Our World, Conquering New Frontiers

Introduction

- Pipelines and deepseacables connecting countries and continents
- Hazards:
 - Human activities (un-/intentional)
 - Natural causes
 - Ageing
- Regular Monitoring

Protecting Our World, Conquering New Frontiers

Multi-sensor system: The AUV

Autonomous underwater vehicles determined for monitoring

- Shallow water or deepsea
- UXO detection and defense
- Environmental monitoring
- Critical infrastructure (e. g. pipelines)

Commercial available AUVs

Protecting Our World, Conquering New Frontiers

Challenge of navigation underwater

- Necessity
 - Safe maneuverability of the AUV
 - Georeferenced location of the recorded sensor data
- Communication
 - Underwater radio does not work
 - Intervention on the system only possible to a limited extent
- Economic viability
 - Specific sensor technology
 - Expensive deployment of assisting devices

Protecting Our World, Conquering New Frontiers

State-of-the-art: Navigation

- Dead Reckoning
 - FOG/RLG-IMUs
 - Doppler velocity logger
 - Accuracy: 0.04 to 2.0 %
- Enriched with
 - USBL from mobile systems
 - LBL from stationary beacons

Protecting Our World, Conquering New Frontiers

"Cooperative Development of a Comprehensive Integrated Autonomous Underwater Monitoring Solution"

Overall Goal:

Development of AUV for autonomous tracking of pipelines up to 500 km in 6.000 m depth

Duration: 2021 to 2024

THE SCIENCE OF WHEN

Diamond Sponsors

28 May - 1 June 2023 Orlando Florida USA

 \rightarrow Reduction of costs

Protecting Our World, Conquering New Frontiers

Goal of Project

Concept

- Port-to-port-solution
- Reduction of costs
- Using the opportunities of collected sensor data

Part of HCU

- MEMS instead of FOG
- Reduction of LBL und USBL Updates
- Renunciation of mothership

CIAM-Prototype of AUV

Protecting Our World, Conquering New Frontiers

AUV-Design: Sensors for Surveys

Multibeam echosounder: Geometrical referenced scan line below

Forward looking sonar: 2D image ahead of AUV

Subbottom profiler: Singlebeam signal through sediment

Electromagnetic sensitiv sensor: Changes of magnetic field

Laserline scanner: Geometrical referenced scanned line below

Camera: Images

Protecting Our World, Conquering New Frontiers

Environment

ultibeam Echosounder

Diamond Sponsors

Protecting Our World, Conquering New Frontiers

Conventional Filter

Protecting Our World, Conquering New Frontiers

Alternative Concept for Navigation

Protecting Our World, Conquering New Frontiers

Heading: ANN-based

- Idea: Fusion of magnetometer and gyro considering their error sources
- Complementary filter

$$\psi = \psi_{mag} * \alpha + \psi_{gyr} * (1 - \alpha)$$
 with $\alpha = 1$

- ANN-model trained with RLG predicting controlparameter α based on magnetometer and gyro

MEMS- and RLG-IMU

Protecting Our World, Conquering New Frontiers

Heading: Visual Odometry (1)

- Idea: Control sensor fusion with information about change of pipeline orientation
- Complementary filter
 - Adding layer to ANN to consider complexity

 $\psi = \psi_{mag} * \alpha + \psi_{gyr} * (1 - \alpha)$ with $\alpha = 1$

- ANN-model trained with RLG/FOG predicting controlparameter α based on relative orientation of pipeline

Detected Pipeline

Protecting Our World, Conquering New Frontiers

Heading: Visual Odometry (2)

- Idea: Derive the orientation of AUV by estimation of pipeline orientation
- Based on Forward looking sonar

$$\Psi = \Psi_{mag} * \alpha + \Psi_{gyr} * \beta + \Psi_{pipe} * \gamma \qquad \text{with } \alpha + \beta + \gamma = 1$$

- Heading $\psi_{\textit{Pipe}}$ obtained by integration or a-priori-information
- ANN-model trained with RLG/FOG predicting controlparameter α,β and γ based on relative or absolute orientation of pipeline

Protecting Our World, Conquering New Frontiers

Traveled Distance: Visual Odometry

- Idea: Compare conintuous features with traveled time like
 - Numbering
 - Joints
 - Flanges
 - Electromagnetic changes
- Receiving an absolute traveled distance
- Fed directly into sensor fusion

Numbering on pipeline

Protecting Our World, Conquering New Frontiers

Global referenced position: A-Priori-knowledge

- Idea: Replace USBL and LBL with unique features
 - Patches
 - Numbers
 - Terrain features
 - Turns and bends of the pipeline
- Mapping
 - Prior surveys with the AUV or other survey systems
 - Specifically build in features
 - Knowledge through relocation of the pipelines
- Fed into sensorfusion

Unique features on pipeline

Protecting Our World, Conquering New Frontiers

Local position: SLAM

- Idea: Increase accuracy and robustness with loop-closure
- Enabling detailed mapping of Points-of-Interests or docking process
- Benefits for repair teams
- Implementation in mission planning needed

Protecting Our World, Conquering New Frontiers

Challenges of Environment-based Navigation

- Semantic environment representation is a challenging field
- Features changes of the years
 - Biofouling
 - Underwater landslides and sedimentation
 - Monotonous bottom or pipeline
- Realtime capacity of processing unit
- Differences in various sensors

Protecting Our World, Conquering New Frontiers

Outlook for the project until 2024

• Major challenges

- Sensitiv data of critical infrastructure
- Expensive fieldtests
- Testing concepts and ideas in simulation
- Collecting (substitute-)data with extra AUV
- Training and validating of ANN-models

SPAROS AUV for Shallow Waters

CIAM-Prototype of AUV

Protecting Our World, Conquering New Frontiers

Thank you for your attention!

Lukas Klatt

lukas.klatt@hcu-hamburg.de

Niklas Schild

niklas-maximilian.schild@hcu-hamburg.de

Questions and feedback are welcome!

