

VORKING WEEK 2023 19 W8⁸¹2 89 JSA 19 W8⁸²2 89 JSA 19 June 2023 Orlando Florida USA

Protecting Our World, Conquering **New Frontiers**

ferencing of 3D Point Clouds in a Presenter-Specificor System Approach Direct,

Jens-André Paffenholz, Yu Lan and Alexander Dorndorf Institute of Geo-Engineering

Motivation

- Terrestrial laser scanner for areal capturing
- Local sensor-defined coordinate system
- Aim: 3D point cloud in a global coordinate system

$$\begin{bmatrix} x_1 \\ y_2 \\ z_2 \end{bmatrix} = \mathbf{R} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} + \mathbf{t}$$

Urban areas

- Integration in geo-referenced data provided by
 - 3D city models
 - Building Information Modelling (BIM)
- At least a few tie points have to be pre-determined
 - RTK GNSS

Monitoring – epoch-wise deformation monitoring

- Man-made structures
 - Dams

- Natural structures
 - Soil erosion

→ Quality of geo-referencing defines the validity of the monitoring and obtained deformations and object changes, resp.

Paffenholz et al. (05-2023) Institute of Geo-Engineering

Short sum up of challenges in monitoring applications

- Straightforward in controlled environments with
 - Pillar-based tie points
 - Laboratory
- Comparatively static environments
 - Minor changes over time
- Man-made objects & scenes

- Significantly changing environments
 - Construction sides
 - Poor distribution of (vertical) features
- Natural objects and scenes

5

- Geo-referencing approaches
- The multi-sensor system
- Evaluation data set
- Conclusions and outlook

Geo-referencing approaches

- Indirect geo-referencing
- Direct geo-referencing
- Pure data driven approaches

Direct Geo-Referencing of 3D Point Clouds in a Multi-Sensor System Approach

Paffenholz et al. (05-2023) Institute of Geo-Engineering 7

Indirect geo-referencing – classical approach

- Artificial, signalized reference points (targets)
 - Pre-determined coordinates (global tie points)
 - Local tie points
- Natural common points → data driven approach
- Pro: Highest accuracy and reliability
- Cons: Efforts for target placement, etc.

Direct geo-referencing – Multi-Sensor System (MSS) approach

- Object capturing
 - Laser scanner
- Referencing sensors
 - 3D Positioning sensors: total station, GNSS equipment
 - Navigation sensors: IMU
- Pro: Immediately transformed 3D point cloud
- Cons: Additional sensors required

Direct geo-referencing

- Laser scanner can be centered and leveled on a fix point
- Scale known from calibration
- Minimizing targets up to full abstinence

[Reshetyuk ,2010]

[Wilkinson et al., 2010]

[IGE, 2022 after Paffenholz, 2012]

Direct geo-referencing – Commercial approaches (1)

Leica RTC360

[Datenblatt des Herstellers Leica, 2019]

Prof. Dr.-Ing. Paffenholz (05-2022) Institute of Geo-Engineering

Leica KI C500					
Range	0,5 m - 130 m				
Field of view	360° x 300°				
Scan rate	2 million points / second; <2 min for 360° object capturing				
Range noise	0,4 mm @10 m und 0,5 mm @20 m				
Weight	6 kg				
Object resolution	• 3 / 6 / 12 mm @10 m				
Accuracies	 Angle accuracy 18" Range accuracy 1 mm + 10 ppm 3D accuracy 1,9 mm @10 m 2,9 mm @20 m 5,3 mm @40 m 				
Navigation	Visual inertial system, altimeter,				
sensors	compass, GNSS				

3D Point Cloud based Monitoring of Natural and Anthropogenic Structures 11

Direct geo-referencing – Commercial approaches (2)

[Datenblatt des Herstellers Z+F, 2019]

Zoller und Fröhlich (Z+F) IMAGER 5016					
Range	0,3 m – 365 m				
Field of view	360° x 320°				
Scan rate	1.1 million pixel / secondmax. 55 rps				
Range noise	0,2 mm (10 m and 80% reflectivity)0,4 mm (25 m and 14% reflectivity)				
Beam diameter	~3,5mm @1 m 0,3 mrad				
Weight	7,5 kg				
Particular feature	 Dynamic compensator Integrated HDR camera and LED Spots GPS(L1), barometer, accelerometer, gyroscope 				

Prof. Dr.-Ing. Paffenholz (05-2022) Institute of Geo-Engineering

- Geo-referencing approaches
- The multi-sensor system
 - Development of a suitable adaptation to accommodate the sensors
 - Development of a calibration strategy for the MSS
 - Appropriate evaluation strategy for deriving the geo-referencing parameters
- Evaluation data set
- Conclusions and outlook

The multi-sensor system and its components

Paffenholz et al. (05-2023) Institute of Geo-Engineering

Development of a suitable adaptation aka grefbar to accommodate the sensors

- Light weight and balanced to minimize impact of sensor's rotational axis while having an easy mount and demount
- Up to two eccentrically mounted 3D positioning sensors
- Near centrically mounted external IMU

Paffenholz et al. (05-2023) Institute of Geo-Engineering

Development of a calibration strategy for the MSS

- Lab based vs. in-field or in-situ
- Less additional infrastructure
- Adequate reference sensor (e.g., total station, laser tracker) fitting the used MSS components specs
- Make use of the circular movement
 - Point describes a circle in 3D (x, y, z) \rightarrow Translation
 - Assumption of a levelled MSS \rightarrow 2D (x, y) \rightarrow Translation
- Starting direction of the laser scanners data $acq \rightarrow Orientation$

Development of a calibration strategy for the MSS

- Common points in the environment
 - Tie points coordinates determined with
 - GNSS (only for plausibility checking)
 - Total station (calibration situation)
 - Equipped with spheres during scanning
- Determine points on the grefbar structure
- \rightarrow Determine the lever arm in
 - x-y-z and
 - Azimuth: angle from center to eccentrically points @grefbar

Appropriate evaluation strategy for deriving the georeferencing parameters – Observation pattern

- 100% parallel to object capturing work flow
- 360° rotation with desired scanning solution
- Time consuming
- Redundant 3d point cloud
 - 2nd face might be interesting for laser scanner calibrations

- Extra task
- 2 * 360° rotation with lowest scanning resolution
- Less time and data consuming
- Redundant trajectory
 - Beneficial to increase reliability due to low-cost GNSS of short trajectory

- Geo-referencing approaches
- The multi-sensor system
- Evaluation data set
- Conclusions and outlook

The evaluation data set: Industrial area

Paffenholz et al. (05-2023) Institute of Geo-Engineering

The evaluation data set: Industrial area

Paffenholz et al. (05-2023) Institute of Geo-Engineering

Exemplarily transformation parameters of 6 stations

- Two times 2 * 360° of the laser scanner
- Standard deviations of the x-y-z component from local sensor to UTM coordinate system of each station

Station	σ_x [mm]	σ_y [mm]	σ_{z} [mm]	σ_x [mm]	σ_y [mm]	σ_{z} [mm]
10007	6,6	5,4	22,2	7,5	4,5	24,9
10006	5,9	6,2	14,5	5,3	4,9	12,9
11006	7,6	6,3	25,1	7,8	6,2	30,5
10004	2,4	7,4	12,4	3	6	13
10003	38,5	116,9	305	19,4	75,4	160,7
10001	4,8	5,9	17,1	7,8	9	11,9

Paffenholz et al. (05-2023) Institute of Geo-Engineering

The evaluation data set: Industrial area

Paffenholz et al. (05-2023) Institute of Geo-Engineering

- Geo-referencing approaches
- The multi-sensor system
- Evaluation data set
- Conclusions and outlook

Conclusion

- Clear potential for less structured environments
- Starting values for subsequent data driven approaches
- Beneficial over built-in sensors since azimuthal orientation is more reliable → no demand for special handling during station change

Outlook

- Make use of second antenna
- Make (more) use of the IMU data
- Bundle block adjustment of single station network

Direct Geo-Referencing of 3d Point Clouds in a Multi-Sensor System Approach

FIG Working Week 2023, Orlando, FL – Scientific Workshop on Uncertainty and Quality of Multi-Sensor Systems [10587] – 27.05.2023

Prof. Dr.-Ing. Jens-André Paffenholz

Institute of Geo-Engineering

Chair of Geomatics for Underground Systems

Speaker for the field of research Raw-Materials Supply and Resource Efficiency @TUC

www.ige.tu-clausthal.de

jens-andre.paffenholz@tu-clausthal.de 🗃

Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag

Supported by:

Zentrales Innovationsprogramm Mittelstand

Funding reference 16KN086436

Direct Geo-Referencing of 3D Point Clouds in a Multi-Sensor System Approach