

DFG Research Training Group i.c.sens (RTG 2159) Integrity and Collaboration in dynamic sensor networks

Improving Terrestrial Laser Scanning Accuracy

Modeling Distance Uncertainties with Machine Learning Techniques

Jan Hartmann **Dominik Ernst** Ingo Neumann Hamza Alkhatib

FIG Working Week 2023

Scientific Workshop on Uncertainty and Quality of Multi-Sensor Systems

2023-05-27

Motivation

Agenda

- Motivation
- Data Acquisition
- Backward Modeling
- Machine Learning Regression
- Regression Results
- Distance Calibration
- Conclusion & Outlook

Reference Point Cloud Acquisition

- Reference sensor:
 - Leica AT 960 (Laser tracker)
 - Leica LAS XL (Handheld scanner)

• Uncertainty in planarity $U_P = 225 \,\mu\text{m}$

TLS Point Cloud Acquisition

- Z+F Imager 5016
 - 50 TLS Scans inside HiTec Lab
 - Under same atmospheric conditions

Z-F Imager 5016 specifications

Spot size	~3.5 mm @ 1 m			
Divergence angle	0.3 mrad			
Accuracy vertical / horizontal	0.004° rms			
Linearity error	0.63 mm			
Scan settings				
Scan quality	Quality +			
Registration	Targets + Scantra			

Backward Modeling

Backward Modeling

Backward Modeling

Data Set

Feature Engineering

Geodätisches Institut Hannover

Data Processing – Principle of Outlier Removal

Data Processing – Outlier Removal by IQR-method

GIH Geodätisches Institut Hannover

1st Model: Multiple Linear Regression

Geodätisches Institut Hannover

Improved Models Dealing with Nonlinearity and Multicollinearity

Regression Results

Partial & Feature Importance

Stacking model (XGBoost): Feature importance

Linear Regression	XGBoost	Catboost	LightGBM	Deep Learning
----------------------	---------	----------	----------	---------------

Stacking Model – Detailed Results Test Data

Stacking Model – Detailed Results

- R²: 39% 80.5%
- RMSE: 0.22 mm 0.44 mm
- Highest RMSE for objects with high curvature (spheres, 3D print)

Distance Calibration

Distance Calibration (Features)

Distance Calibration (Predicted Residuals)

Distance Calibration (Raw Residuals)

Distance Calibration (Residuals after Calibration)

Stacking Model – Detailed Results Validation Data

GEGIH Geodätisches Institut Hannover

Conclusion & Outlook

Conclusion

- ML models achieve satisfactory results
 - R² > 77%
 - RMSE < 0.33 mm
- *Stacking* improves the results slightly
- Joint modeling of objects of different material and shape in one model works well
- Real scan shows the applicability of the ML models to improve accuracy
 - Residuals are normally distributed after calibration
 - Mean residuals and standard deviation decreases

Outlook

- Development of an efficient calibration environment to train ML models
- Investigation of effects from angle measurements

References

- 1. [Hexagon] https://hexagon.com/de/products/leica-absolute-tracker-at960-scanner-bundle
- 2. [Z+F] https://www.zofre.de/laserscanner/3d-laserscanner/z-f-imagerr-5016
- 3. [Matlab] <u>https://de.mathworks.com/help/stats/boxplot.html</u>
- Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM. <u>https://doi.org/10.1145/2939672.2939785</u> <u>https://xgboost.readthedocs.io/en/stable/index.html</u>
- 5. Anna Veronika Dorogush, Vasily Ershov, & Andrey Gulin. (2018). CatBoost: gradient boosting with categorical features support. <u>https://catboost.ai/en/docs/</u>
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146–3154 <u>https://lightgbm.readthedocs.io/en/latest/R/index.html</u>
- 7. Chollet, F., and others. (2015). Keras. https://keras.io/
- 8. Scikit-learn: Machine Learning in Python, *Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, et. Al,*12(85):2825–2830, 2011.
- 9. Hexagon Manufacturing Intelligence. Leica Absolute Tracker AT960 Datasheet 2023. <u>https://hexagon.com/de/products/leica-absolute-tracker-at960?accordId=E4BF01077B2743729F2C0E768C0BC7AB</u>
- 10. Hexagon Manufacturing Intelligence. Leica- Laser Tracker Systems. 2023. <u>https://hexagon.com/products/leica-absolute-scanner-las-xl</u>

Summary

- Usage of ML methods to calibrate distance measurements of a TLS
- Joint modeling of shape and material
- Results:
 - R² > 77%
 - RMSE < 0.33 mm

DFG Research Training Group i.c.sens (RTG 2159) Integrity and Collaboration in dynamic sensor networks

1.2 0.8 1.0 0.6 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.0+-4 -2 0 2 -2 Ó 2 Residuals [mm] Residuals [mm] contact: Jan Hartmann jan.hartmann@gih.uni-hannover.de

Dominik Ernst – Improving Terrestrial Laser Scanning Accuracy, 2023-05-27

Leibniz

Hannover

004

Universität

Bildervorlagen

Detailed Results

Page 35

