

Working Week 2023 28 May - 1 June 2028 Orlando Florida USA Quality investigation Week 101 Prent model **FIG WORKING WEEK 2023**

Protecting Our World, Conquering **New Frontiers**

approaches for the sufficient modelling represention hat the surfaces

Corinnate armenting & Ramon Butzer

Motivation

Monitoring of natural phenomena

- Climate change causes considerable changes of natural surfaces, e. g.
 - Glaciers
 - Land slides
 - Farmland
 - Coastal areas
- Monitoring of natural surfaces to monitor the impact of climate change

© B. Steinhoff-Knopp

Motivation

Monitoring of natural phenomena

- Laser scanning
 - Fast and contactless data acquisition
 - Resulting 3D point clouds with high spatial resolution
- Objective: Derivation of e. g.
 - Volumetric changes
 - Characterizing parameters
- Challenges when analysing the acquired point clouds
 - Measurement noise
 - No corresponding data points in subsequently acquired point clouds
- Common strategy: Modelling of point clouds
 - \rightarrow Variety of difficulties for natural surfaces

Outline

1. Motivation

2. Data sets under investigation

- Soil erosion scene
- Kijkduin beach-dune

3. State of the art: Tensor product B-spline surfaces for point cloud modelling

4. Improved point cloud modelling

- Construction of skinned B-spline surfaces
- Improved point cloud modelling by means of locally parameterized tensor product B-spline surfaces

5. Conclusion and Outlook

Outline

1. Motivation

2. Data sets under investigation

- Soil erosion scene
- Kijkduin beach-dune

3. State of the art: Tensor product B-spline surfaces for point cloud modelling

4. Improved point cloud modelling

- Construction of skinned B-spline surfaces
- Improved point cloud modelling by means of locally parameterized tensor product B-spline surfaces

5. Conclusion and Outlook

Soil erosion scene (Harmening et al., 2023)

- Acquired within a long-term soil erosion monitoring programme
- In southern Lower Saxony (northern Germany)
- Detection of small scale erosion under field conditions
- Installation of small plots (2 x 3 m) on managed cropland
- Field with late summer sowing (maize)
- Weekly scans of the plots (11th May to 8th June)

Soil erosion scene (Harmening et al., 2023)

- Data preprocessing
 - Registration
 - Ground filtering

Soil erosion scene (Harmening et al., 2023) - Resulting point clouds

- Local structures
 - Sewing rills
 - Soil roughness
- Small data gaps (removed vegetation)
- Outliers (remaining vegetation)

Kijkduin beach-dune (Vos et al., 2022)

- North Sea coast, The Hague (The Netherlands)
- Monitoring of the beach by means of permanent laser scanning
- Installation of a TLS on top of a hotel
 - 38 m height above mean sea level
 - Scanner overlooks the beach and dunes
- Hourly scans during a six-months period in 2016/2017
- Data preprocessing
 - Georeferencing
 - Consistency check against RTK-GNSS and ALS

© Vos et al. (2022)

Karlsruhe Institute of Technology

Data sets under investigation

Kijkduin beach-dune (Vos et al., 2022) - Resulting point clouds

- Local structures (dunes)
- Data gaps (occlusions)

Outline

1. Motivation

2. Data sets under investigation

- Soil erosion scene
- Kijkduin beach-dune

3. State of the art: Tensor product B-spline surfaces for point cloud modelling

4. Improved point cloud modelling

- Construction of skinned B-spline surfaces
- Improved point cloud modelling by means of locally parameterized tensor product B-spline surfaces

5. Conclusion and Outlook

$$\hat{\mathbf{C}}(u) = \sum_{i=0}^{n_{\mathbf{P}}} N_{i,p}(u) \mathbf{P}_i$$

- $\hat{\mathbf{C}}(u)$: Estimated curve point
 - *u* : Curve parameter
 - \mathbf{P}_i : $(n_{\mathbf{P}} + 1)$ control points
- $N_{i,p}(u)$: *i*-th B-spline basis function of degree p

$$\hat{\mathbf{S}}(u, v) = \sum_{i=0}^{n_{\mathbf{P}}} \sum_{j=0}^{m_{\mathbf{P}}} N_{i,p}(u) N_{j,q}(v) \mathbf{P}_{ij}$$

- $\hat{\mathbf{S}}(u, v)$: Estimated surface point
 - *u*, *v* : Surface parameters
 - \mathbf{P}_{ij} : $(n_{\mathbf{P}}+1)x(m_{\mathbf{P}}+1)$ control points
- $N_{i,p}(u)$: *i*-th B-spline basis function of degree p
- $N_{j,q}(v)$: *j*-th B-spline basis function of degree q

$$\hat{\mathbf{C}}(u,v) = \sum_{i=0}^{n_{\mathbf{P}}} \sum_{j=0}^{m_{\mathbf{P}}} N_{i,p}(u) N_{j,q}(v) \mathbf{P}_{i,p}(v)$$

- $\hat{\mathbf{S}}(u, v)$: Estimated surface point
 - *u*, *v* : Surface parameters
 - \mathbf{P}_{ij} : $(n_{\mathbf{P}} + 1)x(m_{\mathbf{P}} + 1)$ control points
- $N_{i,p}(u)$: *i*-th B-spline basis function of degree p
- $N_{j,q}(v)$: *j*-th B-spline basis function of degree q

$$\hat{\mathbf{S}}(u, v) = \sum_{i=0}^{n_{\mathbf{P}}} \sum_{j=0}^{m_{\mathbf{P}}} N_{i,p}(u) N_{j,q}(v) \mathbf{P}_{ij}$$

- $\hat{\mathbf{S}}(u, v)$: Estimated surface point
 - *u*, *v* : Surface parameters
 - \mathbf{P}_{ij} : $(n_{\mathbf{P}}+1)x(m_{\mathbf{P}}+1)$ control points
- $N_{i,p}(u)$: *i*-th B-spline basis function of degree p
- $N_{j,q}(v)$: *j*-th B-spline basis function of degree q

$$\hat{\mathbf{S}}(\boldsymbol{u},\boldsymbol{v}) = \sum_{i=0}^{n_{\mathbf{P}}} \sum_{j=0}^{m_{\mathbf{P}}} N_{i,p}(\boldsymbol{u}) N_{j,q}(\boldsymbol{v}) \mathbf{P}_{ij}$$

- $\hat{\mathbf{S}}(u, v)$: Estimated surface point
 - *u*, *v* : Surface parameters
 - \mathbf{P}_{ij} : $(n_{\mathbf{P}}+1)x(m_{\mathbf{P}}+1)$ control points
- $N_{i,p}(u)$: *i*-th B-spline basis function of degree p
- $N_{j,q}(v)$: *j*-th B-spline basis function of degree q

Construction of a base surface

- Construction of a base surface
- Projection onto the base surface yields surface parameters

- Construction of a base surface
- Projection onto the base surface yields surface parameters
- Initial B-spline estimation

- Construction of a base surface
- Projection onto the base surface yields surface parameters
- Initial B-spline estimation
- Reparameterization

- Construction of a base surface
- Projection onto the base surface yields surface parameters
- Initial B-spline estimation
- Reparameterization
- Iterative procedure

Point clouds representing artificial objects

- (Relatively) smooth surfaces
- Clearly defined boundaries
- Inner structures are satisfactorily captured by the boundaries
- Data gaps avoidable
- \rightarrow Successful approximation by means of tensor product B-spline surfaces

Point clouds representing artificial objects

- (Relatively) smooth surfaces
- Clearly defined boundaries
- Inner structures are satisfactorily captured by the boundaries
- Data gaps avoidable
- \rightarrow Successful approximation by means of tensor product B-spline surfaces

Bereich IV, BGU, GIK

- (Relatively) rough surfaces
- No clearly defined boundaries
- Inner structures are unsatisfactorily captured by the boundaries
- Data gaps not always avoidable (occlusions)
- \rightarrow Approximation by means of tensor product B-spline surfaces not satisfying
 - Point cloud's deviations clearly too large
 - Systematic behaviour of the residuals
 - Number of control points not arbitrarily increaseable (loops and artefacts)

- (Relatively) rough surfaces
- No clearly defined boundaries
- Inner structures are unsatisfactorily captured by the boundaries
- Data gaps not always avoidable (occlusions)
- \rightarrow Approximation by means of tensor product B-spline surfaces not satisfying
 - Point cloud's deviations clearly too large
 - Systematic behaviour of the residuals
 - Number of control points not arbitrarily increaseable (loops and artefacts)

- (Relatively) rough surfaces
- No clearly defined boundaries
- Inner structures are unsatisfactorily captured by the boundaries
- Data gaps not always avoidable (occlusions)
- \rightarrow Approximation by means of tensor product B-spline surfaces not satisfying
 - Point cloud's deviations clearly too large
 - Systematic behaviour of the residuals
 - Number of control points not arbitrarily increaseable (loops and artefacts)

- (Relatively) rough surfaces
- No clearly defined boundaries
- Inner structures are unsatisfactorily captured by the boundaries
- Data gaps not always avoidable (occlusions)
- \rightarrow Approximation by means of tensor product B-spline surfaces not satisfying
 - Point cloud's deviations clearly too large
 - Systematic behaviour of the residuals
 - Number of control points not arbitrarily increaseable (loops and artefacts)

- (Relatively) rough surfaces
- No clearly defined boundaries
- Inner structures are unsatisfactorily captured by the boundaries
- Data gaps not always avoidable (occlusions)
- \rightarrow Approximation by means of tensor product B-spline surfaces not satisfying
 - Point cloud's deviations clearly too large
 - Systematic behaviour of the residuals
 - Number of control points not arbitrarily increaseable (loops and artefacts)

Outline

1. Motivation

2. Data sets under investigation

- Soil erosion scene
- Kijkduin beach-dune

3. State of the art: Tensor product B-spline surfaces for point cloud modelling

4. Improved point cloud modelling

- Construction of skinned B-spline surfaces
- Improved point cloud modelling by means of locally parameterized tensor product B-spline surfaces

5. Conclusion and Outlook

Motivation

- Tensor product B-spline surfaces: Infinite number of B-spline curves running into two different directions
 - ightarrow Isoparametric curves
- "Weakness" of tensor product B-spline surfaces: "Global character"
 - \rightarrow Global definition of parameter groups
- Joint determination of isoparametric curves restricts flexibility of tensor product B-spline surfaces
- Here: Independent determination of isoparametric curves
 - \rightarrow Skinned surfaces

- Given: K + 1 section curves $\mathbf{C}_k(u)$
 - Usually planar cross sections
 - In u-direction of the surface to be constructed

$$\mathbf{C}_{k}(u) = \sum_{i=0}^{n_{\mathbf{P}}} N_{i,p}(u) \mathbf{P}_{i,k}, \quad k = 0, ..., K$$

- Skinning: Blending the curves together to form a surface
- Prerequisites for skinning:
 - All C_k(u) are defined on the same knot vector
 - All C_k(u) have common degree p
 - \rightarrow Knot refinement and degree elevation

- Given: K + 1 section curves $\mathbf{C}_k(u)$
 - Usually planar cross sections
 - In u-direction of the surface to be constructed

$$\mathbf{C}_{k}(u) = \sum_{i=0}^{n_{\mathbf{P}}} N_{i,p}(u) \mathbf{P}_{i,k}, \quad k = 0, ..., K$$

- Skinning: Blending the curves together to form a surface
- Prerequisites for skinning:
 - All C_k(u) are defined on the same knot vector
 - All C_k(u) have common degree p
 - \rightarrow Knot refinement and degree elevation

- Construction of control curves
 - \rightarrow B-spline curves interpolating the control points of the section curves
- Control points of the control curves define control grid of the skinned surface
- Skinned surface:
 - Tensor product B-spline surface
 - Section curves are isoparametric curves on the surface
 - "Local character" → Increased flexibility
 - Price paid for flexibility: (Globally) increased number of control points

- Construction of control curves
 - \rightarrow B-spline curves interpolating the control points of the section curves
- Control points of the control curves define control grid of the skinned surface
- Skinned surface:
 - Tensor product B-spline surface
 - Section curves are isoparametric curves on the surface
 - "Local character" \rightarrow Increased flexibility
 - Price paid for flexibility: (Globally) increased number of control points

Skinned B-spline surfaces: Kijkduin beach-dune

- Skinned surface (15 section curves)
- Independent parameterization of the section curves → "Distortions" of the parameter grid causing artefacts
- Improved curve parameterization by taking parameterization of neighbouring curves into account → Regular parameter grid
- Satisfying approximation near the section curves
- Between the section curves: deviations between point cloud and surface

Skinned B-spline surfaces: Kijkduin beach-dune

- Skinned surface (15 section curves)
- Independent parameterization of the section curves → "Distortions" of the parameter grid causing artefacts
- Improved curve parameterization by taking parameterization of neighbouring curves into account
 Regular parameter grid
- Satisfying approximation near the section curves
- Between the section curves: deviations between point cloud and surface

Outline

1. Motivation

2. Data sets under investigation

- Soil erosion scene
- Kijkduin beach-dune

3. State of the art: Tensor product B-spline surfaces for point cloud modelling

4. Improved point cloud modelling

- Construction of skinned B-spline surfaces
- Improved point cloud modelling by means of locally parameterized tensor product B-spline surfaces

5. Conclusion and Outlook

Locally parameterized tensor product B-spline surfaces

Skinned B-spline surfaces as base surfaces

- Construction of two skinned surface
 - Skinned surface in *u*-direction S_u(u, v)
 - Skinned surface in v-direction S_v(u, v)
- Allocation of surface parameters u by projecting the point cloud on S_u(u, v)
- Allocation of surface parameters v by projecting the point cloud on S_v(u, v)
- "Local" base surfaces
 - \rightarrow Locally parameterized B-spline surfaces

Locally parameterized tensor product B-spline surfaces

Locally parameterized B-spline surfaces

- Point cloud's deviations considerably smaller
- Parallel to few section curves: Systematic behaviour of the residuals
 Influence of the dependent curve

parameterization

- However: At the moment no iterative reparameterization
 - \rightarrow Further improvements expected
- Number of control points further increasable without emerging artefacts

Results

MSE

$m_{\mathbf{P}}=m_{\mathbf{P}}$	TP	LP TP		
25	0.3705	0.0234		
26	0.3681	0.0226		
27	0.3628	0.0224		
28	0.3514	0.0219		
29	0.3528	0.0213		
30	0.3506	0.0211		
31	0.3447	0.0207		
32	0.3342	0.0206		
33	0.3376	0.0204		
34	0.3265	0.0206		
MSE [m] (Beach)				

$n_{\mathbf{P}} = m_{\mathbf{P}}$	TP	LP TP		
20	0.0055	0.0039		
21	0.0054	0.0038		
22	0.0052	0.0038		
23	0.0050	0.0038		
24	0.0050	0.0037		
25	0.0049	0.0036		
26	0.0048	0.0036		
27	0.0047	0.0036		
28	0.0049	0.0034		
29	0.0048	0.0034		
MSE [m] (Soil erosion)				

Results

Results

Bereich IV, BGU, GIK

Karlsruhe Institute of Technology

Results

Bereich IV, BGU, GIK

Outline

1. Motivation

2. Data sets under investigation

- Soil erosion scene
- Kijkduin beach-dune

3. State of the art: Tensor product B-spline surfaces for point cloud modelling

4. Improved point cloud modelling

- Construction of skinned B-spline surfaces
- Improved point cloud modelling by means of locally parameterized tensor product B-spline surfaces

5. Conclusion and Outlook

Conclusion and Outlook

Conclusion

- Classically parameterized tensor product B-spline surfaces not suitable to model point clouds representing natural surfaces
- Introduction of locally parameterized tensor product B-spline surfaces
 - Skinned surfaces as base surfaces for parametrization
 - Local but dependent curve parameterization when constructing skinned surfaces
 - Maintenance of compact tensor product representation
 - No local refinement necessary
 - Satisfying point cloud approximation with small number of control points
 - \rightarrow Information about the surface's shape stored in the surface parameters

Conclusion and Outlook

Outlook

- Reduction of systematics in the residuals
 - Iterative Reparameterization
 - Improvement of depending curve parameterization
- Automatic determination of number and directions of section curves
- Increase of the robustness
- Comparison with locally refined B-spline surfaces
 - Hierarchical B-splines
 - LR B-splines
 - ...

Thank you for your attention!

Corinna Harmening

Geodetic Institute Karlsruhe Chair for Geodetic Sensor Systems Karlsruhe Institute of Technology (KIT) Englerstraße 7, 76131 Karlsruhe

Phone: +49 721 608-42300 E-Mail: corinna.harmening@kit.edu Website: www.gik.kit.edu