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SUMMARY  

The perennial annual recurrence of floods in the Greater Accra Region brings along with it 

destruction and loss of lives. Flooding is considered one of the most destructive natural hazards. 

Prediction of these events is one sure way to mitigate their effects on lives and properties.  This 

study developed a prediction model for extreme floods using an artificial neural network and 

GIS to locate impacted geographic areas prone and/or impacted by flooding. It also assessed 

the performance of some flood models in Greater Accra Region.  A Machine Learning method 

(Long Short-Term Memory (LSTM)) and Geographic Information System with the application 

of an Analytic Hierarchy Process (AHP) relying on multicriteria method were applied 

considering factors such as distance to a river, Land Use Land Cover (LULC), lithology, 

drainage density, soil classes, rainfall, elevation, slope, and rainfall-runoff modelling were 

combined to predict floods within the study area. Historical floods were mapped to validate the 

results of the model. The results of the model showed high accuracy in predicting flash floods 

and demonstrate that the locations where floods would occur could be geospatially indicated to 

an accuracy of 80%. It further indicated the various risk zones (Very high, high, medium, and 

low) to flooding. The rainfall prediction gave a correlation figure of 0.953 which was 

considered a good correlation between the prediction model and hence made the early warning 

system very sensitive. The model could be improved for the prediction of floods by considering 

shorter rainfall periods and data from more rainfall stations.  
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1. INTRODUCTION 

Flood is the most common natural hazard, accounting for 41% of all-natural disasters that 

happened globally in the last decade (CRED, 2015). There were around 1,566 floods worldwide 

from 2009 to 2019, affecting 754 million people and resulting in about 51,002 deaths and 

$371.8 billion in damage (EM-DAT, 2019). These statistics only contain "reported" instances 

of large-scale floods, sometimes known as flood catastrophes, in the given context. If data, 

recorded by the international disaster database (EM-DAT, 2019), were to include other 

numerous small-scale floods in which fewer than ten people died, the worldwide impact of 

floods would be even more catastrophic. Governments are nonetheless under pressure to deliver 

trustworthy and accurate flood risk maps and to develop long-term flood risk management 

strategies that focus on forecasting, preventing, protecting, and being prepared (CRED, 2015). 

The Greater Accra Metropolitan Area in Ghana usually faces seasonal floods.  The heavy 

rainfall mostly in the months of the May to July, Accra's low elevation, the soil's similarity to 

clay, inadequate and undersized drains, the dumping of trash into drains and water bodies, and 

the development of wetlands are the primary causes of flooding in the city. (Twumasi & 

Asomani-Boateng, 2002). Urban flooding, which regularly happens and results in the 

destruction of property and lives, has recently emerged as one of the world's issues (Kwang & 

Osei, 2017). Forecast uncertainty and lead time are two main issues hindering accurate flood 

forecasting (Liu et al., 2022). Due to climate change, it is becoming increasingly challenging 

to predict floods and this is leading to the destruction of lots of property, human lives and 

livestock.  

Flood prediction models are essential for controlling extreme occurrences and evaluating risks. 

For the sake of future evacuation planning, policy analysis, and water resource management 

techniques, insightful and trustworthy projections are crucial (Mosavi et al., 2018). Improved 

methods for forecasting short and long-term floods as well as other hydrological events are 

prioritized in order to reduce damage. Forecasting floods by time and place is exceedingly 

challenging due to the dynamic nature of climatic variables. To replicate the intricate 

mathematical formulations of physical processes and basin dynamics, the most significant flood 

prediction models in recent years have become more data-specific and include a range of 

simplified assumptions (Arshad et al., 2019). These models benefit from certain techniques, 

such as event-driven, empirical black box, lumped and distributed, stochastic, deterministic, 

continuous, and hybrids (Arshad et al., 2019).  

Physical models have proven to be effective at predicting a wide range of flooding situations, 

but they typically call for various hydro-geomorphological monitoring data, necessitating 

extensive calculation, and preventing short-term prediction (Mosavi et al., 2018). Due to 

systematic mistakes, deterministic computations are no longer accurate (Pan et al., 2018). 

However, recent reports indicate significant advancements in physically based flood models 

through model hybridization and sophisticated flow simulations (Ko & Kwak, 2012). As a 

result of statistical and physically based models, sophisticated data-driven techniques like 

machine learning, are being employed more. Machine learning (ML) is a subfield of Artificial 

Intelligence (AI) that uses intuitive training to understand patterns in a dataset as part of an 

algorithmic and heuristic approach (Arshad et al., 2019). 
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Although various studies have been carried out to model flooding in the Greater Accra Region 

using GIS, digital elevation model (DEM), and satellite-based approaches (Addae, 2018; 

Konadu & Fosu, 2009; Twumasi & Asomani-Boateng, 2002), it is acknowledged that methods 

of using ML for predicting floods in Ghana could yield improved results (Almoradie et al., 

2020; Nti et al., 2021). This study aims to develop a prediction model for extreme floods using 

an artificial neural network and GIS. It will employ a hybrid model of ML and GIS to model 

and predict floods in The Greater Accra Region. The resulting model will predict the 

occurrence of floods using GIS data and an artificial neural network (Long-Short-Term 

Memory (LSTM)). 

 

2. STUDY AREA 

The scope of this study is the Greater Accra region of Ghana (Figure 1). The Greater Accra 

Region is geographically located between longitude 050 48’ 0” N to 050 28’ N, and latitude 000 

24’30” W to 000 14’ 0” E. The study area shares borders at the north by the Eastern Region, 

the east by the Volta Region, west by the Central Region and south by the Gulf of Guinea.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Map showing study area  

 

3.0 Materials and Methodology 

Figure 1. Map of Study Area 
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3.1 Data and Method 

Various sources of data were considered based on their availability to develop a flood prediction 

model. The methodology employed was based on the flowchart indicated in Figure 2. The data 

used for the study are highlighted enumerated in the Table 1. 

 

 

            

Table 1 Data sources 
Item Dataset Source 

1 Digital Elevation Model (DEM) SRTM 

2 Soil data FAO 

3 Dates and localities of flood events NADMO 

4 Rainfall, humidity, temperature, evapotranspiration GMet, MODIS 

5 River basin Derived from DEM  

6 Landuse data Derived from Landsat8 2021 images 

7 Flow rates (river basin) Hydrological Survey Department 

8 Historic Flood maps Derived from Sentinel 1 images (2015 to 
2021) 

9 Lithological map Ghana Geological Survey 

10 WWF HydroSHEDS WWF 

11 JRC Global Surface Water EC JRC / Google 

 

Flood Prediction Using Machine Learning and GIS as an Early  Warning System (12205)

Michael Nyoagbe, John Ayer, Lily Lisa Yevugah and Yaw Mensah Asare (Ghana)

FIG Working Week 2023

Protecting Our World, Conquering New Frontiers 

Orlando, Florida, USA, 28 May–1 June 2023



 
 

 

Figure 2: Flowchart on methodology 

 

3.2 Rainfall Prediction 

The input data was divided into training set (80%), test set (10%), and validation set (10%) for 

deep learning algorithm of LSTM to be applied for the prediction. Validation of the data was 

performed to provide an initial check that the model can return useful predictions in a real-

world setting. The trained model was evaluated with the test set to obtain the accuracy of the 

prediction. Using a deep learning machine learning approach, rain was forecasted. An artificial 

neural network approach was used, which used input variables with environmental factors that 

were moderately and significantly associated to rainfall. RMSE and MAE were used to 

determine the performance metric. 

3.2.1 Performance Assessment 

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were used to assess the 

performance of the machine learning algorithm utilized in this work to forecast rainfall. Two of 

the most popular measures for evaluating the correctness of continuous variables were RMSE 

and MAE. Without considering their direction, the MAE (Equation 1) calculates the average 

error in a series of forecasts and the matching observation. 
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𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 −𝑛

𝑗=1 ŷ|   EA       Equation 1 

The average magnitude of the error was measured by the RMSE, a quadratic scoring method 

Shown in Equation 2 is the average of the squared discrepancies between predicted results and 

actual observations. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑗 − ŷ)²𝑛

𝑗=1          Equation 2 

Large errors are given a comparatively larger weight in RMSE. This suggests that the RMSE is 

most advantageous when large errors are most undesired. The variance in the errors in a set of 

forecasts may be identified by combining the MAE and the RMSE. The variation in the 

individual errors in the sample will always be bigger than the MAE or more than the RMSE, 

depending on how much of a difference there is between the two. All errors have the same 

magnitude if the RMSE = MAE. 

3.3 Rainfall Run-off modelling 

The rainfall-runoff model based on the Curve Number (CN) approach (Soil Conservation 

Service 1964; 1972) was built using Google Earth Engine (GEE). Through the JavaScript API, 

all the fundamental datasets— (soil, LULC, and rainfall) image data were loaded into GEE. 

The CN II maps were initially created by converting the soil texture map into a soil group map 

and combining it with Land Use Land Cover. The total amount of precipitation over the 

previous five days was used to determine Antecedent Moisture Condition (AMC) data. 

Depending on the AMC circumstances of each pixel, the daily run-off was determined. The 

model calculated the surface run-off based on the extent of the study area. 

3.4 SCS CN model development 

The classical CN technique, which is based on the water budget equation as shown in Equation 

3, is an event-based, lumped rainfall-runoff model. 

𝑃 = 𝐼𝑎 + 𝐹 + 𝑄                                                     Equation 3 

Two proportional equality hypotheses are expressed in Equation 4 and Equation 5 as follows 

𝑄

𝑃−𝐼𝑎
=

𝐹

𝑆
                                                                              Equation 4                                                             

𝐼𝑎 =  𝜆𝑆          Equation 5                               

Where P represents the amount of daily precipitation, Ia denotes the preliminary abstraction, F 

denotes real retention, Q denotes direct surface run-off, S denotes prospective highest retention, 

and denotes the initial abstraction coefficient.  

The well-known SCS CN equation is shown in Equations 6 and 7 by combining the two 

equations 4 and 5. 

𝑄 = {
(𝑃−𝐼𝑎)2

𝑃−𝐼𝑎+𝑆
           for     P > Ia,

0                        for P ≤ Ia
                                                              Equation 6                                                        
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where S is a function of CN and can be computed using Equation 7. 

𝑆 = 25.4 (
1000

𝐶𝑁
− 10)                                                                       Equation 7 

where S is measured in millimeters and CN is a dimensionless run-off coefficient that relies on 

the type of land used, the type of soil, and the pre-existing moisture state (AMC). 

An important factor in the run-off process is antecedent moisture, which is the catchment's 

relative dryness or wetness as it varies through time. Three classifications can be used to 

describe AMC. 

When there has been no rainfall in the previous five days, or when AMC is less than 13 mm, 

AMC I is taken into consideration. A moist state (AMC III) may exist when AMC is greater 

than 28 mm, and an average condition (AMC 28 mm) may exist (AMCII). Based on the LULC 

and soil group characteristics, CNs have been recommended for AMC II. In relation to AMC I 

and AMC III, CN (Equations 8 and 9). 

𝐶𝑁(𝐼) =
𝐶𝑁 (𝐼𝐼)

2.281−0.0128𝐶𝑁(𝐼𝐼) 
                                                                          Equation 8  

𝐶𝑁(𝐼𝐼𝐼) =
𝐶𝑁 (𝐼𝐼)

0.427−0.00573𝐶𝑁(𝐼𝐼) 
                                                                     Equation 9 

 [Ponce and Hawkins, 1996; Rallison and Miller, 1982; USDA National Resources 

Conservation Service, 2004]                                                      

The rainfall-runoff modeling was carried out using GEE after indicating the different input data. 

The ternary operator in image expression was originally used to translate the soil texture map 

into the four hydrologic soil groups A, B, C, and D. Then it is included as a second band in the 

downscaled LULC MODIS data. The conditional statement is then used to construct the curve 

number two (CN II) map for each combination. There are four soil groupings and MODIS 

LULC data classes. The CN I and CN III maps are created using CN II and Equations 6 and 7. 

The S image, which depends on AMC, performs the CN image's purpose. As a result, during 

the final Q calculation, the S pictures corresponding to CN maps are generated. The script 

creates S images as a global variable to speed up processing for all CN circumstances. Utilizing 

daily rainfall data images, daily AMC images are produced. For each day of the study period, 

an AMC collection was created using the five days prior, including same-day rainfall. 

The S-I image calculated from CN I is used to replace pixels with an AMC of less than 13 mm, 

while the S-III image computed from CN III is used to replace pixels with an AMC of  

than or equal to 28 mm. To create a single S picture for each day that meets the AMC criterion 

for all pixels, the three images are combined. If rainfall for a single pixel on a single day is less 

than Ia, the consequent run-off will be 0; otherwise, the run-off is approximated using the 

previously described function. This condition is then tested after using the equation for run-off 

computation. 

To obtain the run-off images for each date, this function is mapped across the whole collection 

of AMC and rainfall. Both characteristics are integrated in a single image for each date to 
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display the graph of rainfall and runoff. The images were then aggregated together to create the 

sum of images of rainfall and runoff, which is then used to create the final time series graph.  

3.4 Flood Risk modelling 

To develop a flood risk map using the AHP method, 8 input parameters (elevation, slope, 

distance from river, drainage density, rainfall, LULC, soil and lithology) were used. Each of the 

input features were classified into sub classes. The elevation, slope, distance to river, drainage 

density, LULC, soil and lithology were reclassified into five classes with respect to their flood 

causing properties. Rainfall was classified into three classes of high, medium and low indicating 

the rainfall intensity for the period under consideration. 

To obtain risk assessments for the evaluation of flood risk, a table questionnaire was given to 

various experts based on what was done by Allafta & Opp (2021). Indicated in the table are 

factors to consider for this study, these are eight flood influencing factors (precipitation, 

geology, drainage density, Digital Elevation Model, Land Use Land Cover, terrain slope, soil 

characteristics, and distance from river). The experts were instructed to choose one parameter 

(for example, precipitation) and evaluate against the other parameters one at a time to determine 

“which parameter is more important?” with regards to flooding.  The experts then used their 

knowledge to compare the pairing of these aspects. And how significant is that in Saaty's eyes? 

(Harker & Vargas, 1987) and their significance on a scale of 1 to 9 are shown in Table 1. 

Table 1: The factor relevance scale   

level of importance Description 

1 Equal significance 

3 Medium significance 

5 Strong 

7 Very strong significance 

9 Maximum significance 

2, 4, 6, and 8 Intermediate between two adjacent values 

An 8x8 pairwise comparison matrix for the mapping of flood hazards (Table 2) was generated 

based on the excel template created by (Goepel, 2013b). 

Table 2: An 8 x× 8 pairwise comparison matrix for the AHP-based flood hazard mapping 

  PRf SDR EDEM LSl LULC DD LSo RLt 

Normalized principal 

Eigenvector 

PRf 1 1 ½ 1 1/7 2 2 1/4 1 1/2 1 7/9 2 2/3 19.57% 

SDR  2/3 1 1 1/2 1 1/7 2 1 1/4 1 2/3 2 1/2 16.06% 

EDEM  7/8  2/3 1 1 1 1/2 1 1/6 1 5/9 3 14.20% 

LSl  ½  7/8 1 1 1 1/2 1 3/4 1 4/9 2 1/2 13.99% 

LULC  4/9  ½  2/3  2/3 1 1 3/4 1 4/9 2 1/6 11.07% 

DD  2/3  4/5  6/7  4/7  4/7 1 1 1/3 2 10.57% 

LSo  4/7  3/5  2/3  2/3  2/3  3/4 1 1 1/2 8.89% 
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RLt  3/8  2/5  1/3  2/5  1/2  1/2  2/3 1 5.65% 

Sum 5 6 1/3 7 1/7 7 1/2 10 9 2/3 10 8/9 17 1/3 100.00% 

The principal eigenvalue (λmax) indicates the matrix deviation from consistency (Brunelli & 

Fedrizzi, 2013). A pairwise matrix was considered to be consistent only when the λmax is equal 

or higher than the number of the parameters investigated; or else, a new matrix should be 

generated (Allafta & Opp, 2021b). The principal eigen-value λmax in Table 3 was achieved by 

the summation of products of the sum of parameter columns in the pairwise matrix in Table 2 

and the eigenvectors in Table 3. A principal ei-genvalue of 8.14 for an 8*8 matrix was achieved 

and applied to calculate of the consistency measure (Table 1). 

Table 3: Computation of the principal Eigenvalue (λmax) to rank influence of parameter  

  

Column sums row 10 of  

Table 4 (1) 

Eigenvectors column 11 of 

Table 4 (2) 

Parameter rank 

(1)*(2) 

PRf 5 0.196 0.98 

SDR 6 1/3 0.161 1.02 

EDEM 7 1/7 0.142 1.01 

LSl 7 1/2 0.14 1.05 

LULC 10 0.111 1.11 

fDD 9 2/3 0.106 1.02 

LSo 10 8/9 0.089 0.97 

RLt 17 1/3 0.057 0.98 

Sum (λmax)   8.14 

Note: PRf = Rainfall; SDR = Distance to River; EDEM = Digital Elevation Model; LSl = Slope; 

LULC = Land Use Land Cover; fDD = Drainage Density; LSo = Soil; RLt = Lithology. 

Table4: Random Index table 

Number of 

parameters 

1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

Calculating the consistency ratio, the normalized weight's consistency could be assessed 

(Allafta & Opp, 2021c). The given weights were only considered consistent when the 

consistency ratio is equal to or less than 10%; otherwise, these weights needed to be reevaluated 

in later rounds to minimize inconsistency (Harker & Vargas, 1987). The consistency index (CI) 

was calculated in order to calculate the consistency ratio according to Saaty (1988): 

𝐶𝐼 =
λmax−n

𝑛−1
                Equation 10 

where max is the largest eigenvalue and n is the total number of different theme layers. The 

CI in this study is established by: 
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𝐶𝐼 =  
(8.14−8)

8−1
= 0.02        Equation 11 

Equation 11  was used to calculate the consistency ratio (CR): 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
               Equation 12 

where RI for different n parameters represents the random index provided in Table 4. In this 

study, RI is calculated as 1.41 based on the eight criteria considered. CR therefore equals: 

0.02/1.41 = 0.014184 

According to their importance in terms of flood vulnerability, weight ratings were given to the 

various thematic layers together with their respective classes during the study. Using the 

expertise of experts, weights were allocated to the layers and classes (Tables 3 and 4). The total 

scores were then calculated using a straightforward weighted sum. Each pixel of the resulting 

map (Hi) was calculated using the equation shown below (Sumit, 2018): 

𝐻𝑖 = ∑ 𝑊𝑗 × Xij𝑛
𝑗          Equation 13 

Where Wj denotes the j layer's normalized weight, and Xij denotes the rank scores of each class 

relative to the j layer. 

The flood model was then used to access the accuracy of the flood risk model. Areas with very 

high risk, high risk, moderate and low risk were check for consistency with historic flood events 

and used to determine the accuracy of the flood risk model. Spatial overlay analysis was 

employed in this assessment. 

 

4. RESULT 

The output of the proposed (LSTM)-based rainfall prediction model for forecasting rainfall over 

a 30-day period is shown in Figure 3.  
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Figure3: Rainfall Prediction mode 

The figure displays the Greater Accra Region's actual daily rainfall levels as determined by 

GMet and the 30-day rainfall forecast. The findings demonstrated that the proposed technique 

is 95.25% accurate in predicting average rainfall (in mm). On the graph, the green line shows 

the amount of average daily rainfall predicted by the model, while the red line reflects the 

amount of average daily rainfall observed by the rain gauge. The actual values and the forecast 

had a 0.953 correlation, which is a strong correlation. Consequently, it is possible to forecast 

rainfall for a certain day using the suggested model.  

The LSTM had an RMSE of 0.0366 and an MAE of 0.0267 with and confidence level (R2%) 

of 95.25%. The outcomes of the implemented model were contrasted with those of earlier 

techniques for predicting rainfall. Although using deep learning to forecast rainfall improves 

accuracy, it was found that the implemented model underperformed Endalie et al. (2021) 

techniques by 4.47% in terms of RMSE because fewer input parameters were used due to lack 

of data. 

Four risk classes were obtained from the analysis (Very High, High, Medium and Low). The 

related zones indicating the flood prediction created using the 8 parameters employed in hazard 

mapping are summarized in Table 5. The findings revealed four separate groups of risk (zones) 

within the basin that represented four values and their corresponding risk classes of flood 

threats. 

Out of the eight variables employed in the hazard mapping, the flood forecast was created from 

the flood risk map. In the basin, these results led to the creation of 5 separate classifications 

(zones) that correspond to very high, high, medium, low, and very low flood threats (Figure 4). 

These zones made 0.015%, 11.48%, 13.91%, and 74.27% of the basin area of the research 

region, respectively. 
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Figure 4:  Flood Risk map 

 

 

Table 4. Flood Risk Zones 

Value Risk Class Area(km2) 

1 Very High  372.57  

2 High  451.49  

3 Medium  10.50  

4 Low  372.57  

 

Distance to river, slope, DEM, and drainage density all have a positive impact on the high and 

very high zones in this study. Risk to flooding and the likelihood that it will happen again are 

increased by being closer to rivers, living within areas of low elevations and having relatively 

high drainage density. 
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Moderate flood hazard zones are found along the rivers in those subbasins due to the influence 

of areas with Relatively high elevations and low drainage density, but they are farther away 

from the very high and high zones, which are anticipated to be produced by the highest rainfall 

levels in the middle to southern regions extending east and westward of the watershed (Figure 

5).  

 

Figure 5.  Runoff and Flood Mapping For 25th May 2018 

In contrast, the low and very low zones are farthest from the river body and these areas have 

the least susceptibility to floods since they have the lowest drainage density and are farthest 

from the river. Within the catchment area of the study, it was found that the bulk of the places 

with very high- and high-risk zones were in the areas with very high and high rainfall. 

5. CONCLUSION AND RECOMMENDATIONS  

In conclusion, the results of flood prediction using LSTM based prediction of rain and the AHP 

flood risk modelling proved very effective in predicting floods in the Greater Accra Region of 

Ghana. The SCS curve number method of run-off modelling method in GEE transforms 

predicted precipitation into runoffs. This indicates the applicability of Machine Learning and 

GIS in flood prediction. 
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In predicting floods, one of the most sensitive inputs to floods is rainfall. When rainfall is 

predicted accurately, the other factors are physical factors such as runoff. There are several 

factors however that affect the amount of runoff which helps determine the intensity of flooding 

within an area.  

To improve on the accuracy of the rainfall prediction, other parameters such as wind speed and 

sunshine could be considered. When much more meteorological parameters are considered, the 

likelihood of increasing the model's accuracy is higher. 

Further studies need to be carried out to predict rainfall at shorter time intervals from the radar 

images and possibly GNSS CORS data. This will improve the prediction models for rainfall 

developed in this study which focused on the 30-day daily total rainfall.  
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