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Abstract 

Total Least Squares (TLS) is noted to be a solution approach to solving several geodetic 

problems. The method has the ability to estimate unknown quantities that are useful for many 

geodetic applications. Hence, the main objective of this study is to improve the estimation 

performance of TLS via Radial Basis Function Neural Network (RBFNN) in coordinate 

transformation. This hybrid approach called TLS-RBFNN was applied to Ghana geodetic 

reference network, which has a coverage area of 79857 km2 representing 33.5% of the total 

land mass (238540 km2). A comparative performance analysis of TLS, RBFNN and TLS-

RBFNN was carried out using Root Mean Square Horizontal Error (RMSHE) and Standard 

Deviation (SD). Based on the testing results, it was found that the TLS-RBFNN improved the 

transformation accuracy of RBFNN and TLS by 20.240% and 37.240% based on the RMSHE. 

In addition, it was observed that the TLS-RBFNN improved the transformation precision 

based on SD by 0.3703% and 8.52%, respectively. Furthermore, the Bayesian Information 

Criterion (BIC) applied confirmed the superiority of the hybrid approach than using TLS and 

RBFNN as independent transformation methods. Consequently, the hybrid approach is 

recommended for enhanced coordinate transformation results in Ghana geodetic reference 

network. 

 

Keywords: Total Least Squares, Artificial Neural Network, Coordinate Transformation, 

Global Navigation Satellite System 
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INTRODUCTION 

Global Navigation Satellite System (GNSS) has been a major source of technology used for 

Earth observations since its inception. GNSS, particularly Global Positioning System (GPS), 

has become increasingly popular over the years, due partly to the multitude of problems 

associated with the conventional surveying techniques. It is well acknowledged that GNSS 

acquired data is based on geocentric system of reference and thus cannot be directly used in 

astro-geodetic datums. Hence, due to change in datum position, size and shape, coordinate 

transformation between two geodetic datums qualifies it to be a good choice. Thus, the 

transformation attempts to provide a unifying approach that bridges the gap between the 

different datums. 

 

Several conventional transformation methods such as Bursa-Wolf (Bursa, 1962; Wolf, 1963), 

Molodensky-Badekas (Molodensky, Yeremeyev, & Yurkina, 1962; Badekas, 1969), 

geocentric translation model, standard Molodensky, Abridged Molodensky, polynomial and 

multiple regression (Applebaum, 1982; Featherstone, 1997; Fraser and Yamakawa, 2004; 

Newsome and Harvey, 2003) have been widely applied in literature. These mentioned 

techniques have peculiar characteristics they have been employing to accomplish the 

coordinate transformation tasks. Thus, by utilising set of transformation parameters. 

 

Over the years, numerous techniques have been proposed and used to determine the 

transformation parameters. In practice, the most common alternatives may be categorised into 

least squares algorithms, partitioning methods, Ill-posed approach, quaternions approach and 

Procrustes algorithm (Collier, Argeseanu, & Leahy, 1998; Soler and Snay, 2003; Grafarend 

and Awange, 2003; Shen, Chen, & Zheng, 2006; Felus and Schaffrin, 2005; Lippus, 2004). 

However, the popularity of Artificial Neural Network (ANN) methodology has been growing 

in a wide variety of areas in geodesy and geomatic engineering. Its efficacy as a coordinate 

transformation technique is well documented. Literature confirms that the ANN approaches 

could produce reasonable and promising results that are more satisfactory than the empirical 

affine, conformal and projective transformation methods (Tierra, De Freitas, & Guevara, 

2009; Kumi-Boateng and Ziggah, 2017; Ziggah, Youjian, Tierra, Konaté, & Hui, 2016a; 
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Ziggah, Youjian, Yu, & Laari, 2016b; Ziggah, Youjian, Laari, & Hui, 2017; Ziggah, Issaka, 

Laari, & Hui, 2018; Ziggah, & Laari, 2018; Ziggah, Youjian, Tierra, & Laari, 2019a; Ziggah, 

Hu, Issaka, & Laari, 2019b; Gullu and Narin, 2019 and references therein). The strength of 

the ANN has been credited to its ability to effectively reduce the distortion and heterogeneity 

in spatial data related to the different geodetic datums. Moreover, the self-adaptive feature of 

the ANN enables it to appropriately identify hidden patterns in a data set to build the 

prediction model. 

 

In the last few years, combining ANN and empirical methods to create a hybrid approach is 

becoming very popular among geoscience researchers. Examples of some application areas 

include landslide studies (Huang, Wu, & Ziggah, 2016 and references therein), hydrological 

studies (Tiwari, Adamowski, & Adamowski, 2016 and references therein), meteorology 

(Ghorbani, Khatibi, Fazeli Fard, Naghipour, L., & Makarynskyy, 2016 and references therein) 

to mention but a few. Literature reveals that the hybrid approach offers better computational 

efficiency than separately applying the methods. Whereas the hybrid concept is becoming 

much appreciated, none of the existing studies in coordinate transformation fully address the 

issue of combining empirical transformation procedure and ANN technique or any other soft 

computing techniques. The dominance of ANN to solve several geodetic problems (e.g. 

coordinate transformation, tide modelling, gravity field modelling, orbit determination, digital 

terrain height estimation, crustal deformation, GNSS error modelling, etc.) makes it important 

computational tool (Tierra and De Freitas, 2005; Kaftan, Salk, & Senol, 2011; Liao, Wang, 

Zhou, Liao, & Huang, 2012; Salim, Dwarakish, Liju, Thomas, Devi, & Rajeesh, 2015; Lei, 

Zhao, Cai, 2015; Okwuashi and Ndehedehe, 2015; Huang et al., 2016; Razin and Voosoghi, 

2017; Gullu and Narin, 2019).  

 

Therefore, motivated by the successful application of ANN, the main focus of this study is to 

explore the potential of integrating Total Least Squares (TLS) and Radial Basis Function 

Neural Network (RBFNN) in coordinate transformation process. The choice of these methods 

was based on its frequent use, simplicity in application and computational efficiency. The 

TLS-RBFNN integrated approach was tested in Ghana geodetic reference network to perform 
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coordinate transformation between the global WGS84 and Ghana’s War Office 1926 

ellipsoid. Such integration approach is significant for Ghana because of the astro-geodetic 

datum used for surveying and mapping works. In addition, with all the attendant problems of 

the astro-geodetic datums in mind (see Varga, Grgić, & Bašić, 2017; Poku-Gyamfi, 2009), the 

need to explore and test the potential of different coordinate transformation procedures in the 

Ghana geodetic reference network is reasonable. In continuance of that, the TLS and RBFNN 

when combined will both use their strengths and weaknesses to complement each other. Thus, 

the hybrid approach will combine their function approximation and nonlinear modelling 

capabilities.  

 

Moreover, using TLS can improve the performance of the RBFNN in many aspects such as 

training speed, reduction in the size of the network leading to fast convergence and 

satisfactory transformation results. The proposed hybrid approach could be categorised as a 

combination of knowledge-based system and empirical model. The idea behind this study is 

not to take away the significance of the empirical transformation models, but to demonstrate 

from a practical perspective how combining those with ANN can be more effective in solving 

coordinate transformation problems. Evidently, this study shows the potential and the 

resulting consequences of using such hybrid approach as a practical tool for coordinate 

transformation in Ghana geodetic reference network. 

 

MATERIALS AND METHODS 

Study Area and Data Used 

Ghana is a West African country bounded by latitudes 4°30' N and 11o N, and longitudes 3o 

W and 1o E (Mugnier, 2000). The country uses the Accra 1929 datum for its geospatial 

activities. The reference ellipsoid of the Accra 1929 datum is the War Office 1926. This 

reference ellipsoid has its origin at latitude 5o 23' 43.33'' N and longitude 0o 11' 52.3'' W with 

semi-major axis a = 6378299.99899832 m, semi minor axis b = 6356751.68824042 m and 

inverse flattening f = 296 (Poku-Gyamfi, 2009; Ayer, 2008; Ayer and Fosu, 2008). For the 

purposes of land surveys, the Transverse Mercator projection has been adopted to derive 

projected grid coordinates in Easting and Northing. The Transverse Mercator has its origin at 
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longitude 01o 00' W and latitude 04o 40' N with false Easting value of 274319.736 m added to 

all Y coordinates to avoid negative coordinates and setting the false Northing to zero 

(Mugnier, 2000; Poku-Gyamfi, 2009). A used scale factor of 0.99975 was found to eliminate 

the scale distortion effect within the country but this can exceed the projection values only at 

the borders (extreme ends) of the country. Since Accra 1929 datum is non-geocentric but GPS 

acquired data based on WGS84 is geocentric, localisation of the GPS data will require 

coordinate transformation. In this study, two sets of 19 co-located points were collected based 

on the War Office 1926 WARh),,(   and WGS84 84),,( WGSh ; where   is the geodetic 

latitude,   is the geodetic longitude and h  is the ellipsoid height. The point distribution of 

the data used for the analysis is shown in Figure 1. These data sets were provided by the 

Ghana Survey and Mapping Division of Lands Commission from the Land Administration 

Project. It is important to note that these co-located points are the only available data set and 

those for the northern part and the rest of the country are yet to be observed. 
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Figure 1. Co-Located Points Distribution in the Study Area 

 

APPLIED METHODS 

Total Least Squares 

The generic least squares type is the Ordinary Least Squares (OLS) with the implicit 

assumption that the errors in the design matrix are zero but the only errors present can be 

found in the observation vector. However, in geodetic practice, all observed data (coordinates) 

may suffer some form of errors. In order to correct for such errors, a more pragmatic TLS 

approach is needed (Felus and Schaffrin, 2005; Akyilmaz, 2007; Okwuashi and Eyoh, 2012). 

Consequently, this study applied the TLS approach for the coordinate transformation due to 

its superiority to the OLS in producing precise coordinate transformation results as indicated 

by several authors (Akyilmaz, 2007; Felus and Schaffrin, 2005; Okwuashi and Eyoh, 2012). 

 

Golub and Van Loan (1980) introduced the TLS approach as a solution technique to estimate 

an over-determined system of linear equations expressed in Equation (1) as 

BX K=   (1) 

where B ∈ Rm×n and K ∈ Rm×d  are the given datasets, X ∈ Rn×d is the unknown parameters to 

be determined, m is the number of observations, n is the number of unknowns and m ≥ n. To 

estimate X in Equation (1), the design matrix (B) is considered to be affected by random 

errors expressed in Equation (2) (Akyilmaz, 2007) as 

( )B KB v X K v+ = + , rank( )B m n=    (2)  

It must be known that both Kv  (error vector of observations) and Bv  (error matrix of data 

matrix) in Equation (2) are presumed to have independent and equivalent distributed rows 

with zero mean and equal variance (Akyilmaz, 2007). To minimize the errors in the data, the 

TLS approximation (Equation 3) is iteratively applied. 

  ( 1)ˆ ˆ ˆ ˆmin ; ; , ; m n

F

B K B K B K R  +   − 
   

, subject to : ˆ ˆ( )K R B  (3)  

where m and n are the same as defined in Equation (1); B̂  is the new estimated data matrix; 

K̂  is the new estimated observation vector; and 
F

 is the Frobenius norm of m x n matrix. 
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Equation (3) iteration continues until a minimizing matrix ˆ ˆ;B K 
   is found such that any X̂  

(estimated unknown parameters) satisfying ˆ ˆ ˆBX K= is the TLS solution and 

 ˆ ˆ ˆ ˆ; ; ;B K B K B K     = −
     is the corresponding TLS correction (Akyilmaz, 2007; Golub and 

Van Loan, 1980; Okwuashi and Eyoh, 2012). It is worth mentioning that the TLS solution is 

usually determined through the functional relation expressed in Equation (4) as 

  ˆ; ; 1 0
T

TB K X − 
 

.  (4) 

In this study, the Singular Value Decomposition (SVD) approach was applied on the matrix 

 ;B K  to solve the TLS problem. Using the SVD enables the matrix  ;B K  to be 

investigated to know whether it is rank deficient or not. The SVD mathematical representation 

of the matrix  ;B K (Van Huffel and Vandewalle, 1991) is given in Equation (5) as 

 ; TB K USV=   (5) 

where       m
Tm
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+  , 
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n Rdiag = ),,( 11   , 

dnm
tnn Rdiag −

++ = )(
12 ),,(   , and 011  +n  . 

The i are the singular values of B and [B:K], and the vectors ui and vi are the ith left and 

right singular vector of B and [B:K], respectively. A TLS solution exists if and only if V22 is 

non-singular and the solution is unique if and only if 1+ nn  . The TLS solution is therefore 

expressed as 
1

2212
ˆ −

−= VVX tls  and the corresponding TLS correction matrix is expressed in 

Eq. (6) as 

  2; (0, ) T

TLS TLS TLSC B K U diag V =   = −  .  (6) 
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Radial Basis Function Neural Network 

Broomhead and Lowe (1988) proposed RBFNN technique which processes information by 

using norms and radial basis functions. This network creates an alternative means of applying 

arbitrary input-output patterns for function approximation problems (Deyfrus, 2005). It has a 

feedforward topology consisting of three layers; the input, hidden and output that are 

completely linked together. Figure 2 shows the RBFNN architecture with inputs (X1, X2, …, 

Xd), radial basis function (φ1, φ2, … , φN), weight (W1, W2, …, WN) and output (y) 

respectively. 

 

 

 

 

Figure 2. RBFNN Structure 

 

This study adopted the supervised learning algorithm to train the RBFNN. A code written in 

MATLAB environment was used to carry out the RBFNN training. In the RBFNN scheme, 

the input layer comprises the data that are submitted into the network by unweighted 

connections. These input nodes are then transmitted into the hidden layer chamber by a non-

linear activation function. Within the hidden layer, each neuron computes a Euclidean norm 

that represents the distance between the input to the network and the position of the neuron 
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called the centre. This is then inserted into a radial basis transfer function which estimates and 

outputs the activation of the neuron (Deyfrus, 2005). This study applied the Gaussian 

activation function expressed in Equation (7) as 















 −
−=

2

2

2
exp)(

i

j

i

X
X




          (7) 

where )(Xi denote the hidden layer output of the ith unit, X is the input vector, µj is the 

centre of the Gaussian function for the hidden node j, σi is a spread parameter for regulating 

smoothness properties of the Gaussian function and jX − is the Euclidean norm. When 

calculations are completed, the output layer containing the identity activation function then 

uses the weighted sum of the radial basis function layer as propagation function. The 

estimated output layer results from the RBFNN could be represented by Equation (8) (Jain, 

Singh, & Srivastava, 2011) as 


=

+=

M

i

oii wXwy
1

)( ,          (8) 

where M is the number of radial basis function and w represent the weight of the network. The 

mean squared error (MSE) for the Xth data was estimated using Equation (9) (Jain et al., 

2011). 

2)(
2

1
po yyMSE −=           (9) 

where oy and py are the actual output and target for the Xth data, respectively. The training 

process was then repeated for all training data. Equation (10) (Jain et al., 2011) was applied to 

estimate the error function )( kE . 


==

−==

totaltotal X

X

to

X

X

k yyMSEE
1

2

1

)(
2

1
        (10) 

where 
totalX  represents the total number of training data. The connection weight, piw  which 

minimizes kE  was updated using Equation (11). 

)()()1( KwKwKw pipipi +=+         (11) 
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where )(Kwpi is given by Equation (12) as 

 =
−+=

totalX

X piXiXpi KwAKKw
1

)1()()(  .      (12) 

where )(K  is the learning rate at Kth iteration, X  is the error signal of the Xth data,  is 

the momentum parameter and AXi denote the output vector of the hidden layer neuron i for all 

the input data. This RBFNN training process was repeated till the network error reaches an 

acceptable value. 

 

Proposed Hybrid Model 

Local geodetic networks are highly distorted compared to the geocentric reference systems. 

The distortion is partly contributed by the conventional surveying techniques such as 

triangulation, traversing, resection and astronomical observations used in establishing the 

local geodetic network. Thus introducing distortions, systematic or observational errors within 

the network. Furthermore, the adjustment procedures used to adjust the local geodetic 

networks were of lower accuracies (see Varga et al., 2017 and references therein). This 

supports the point made in Featherstone (1997) and Grgić, Varga, & Basic (2015) that the 

present conformal transformation models often times are unable to accurately reduce the 

distortion effects on the final transformation outputs. 

 

After careful review of existing research works pertaining to Ghana geodetic network, the 

author realised that in many applications of the conformal transformation models, large 

residuals are often produced. Hence, in this study an attempt has been made to explore the 

integration of TLS and RBFNN in the transformation process. The motive is to determine the 

viability of such integrated approach for coordinate transformation in Ghana. Figure 3 denotes 

a summary of the proposed hybrid approach.  
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Figure 3. Flow Chart of the Proposed Hybrid Approach 

Specific detail on how the hybrid approach was developed and implemented is presented as 

follows: 

 

Step 1: Converting Geodetic Coordinates to Cartesian Coordinates 

The geodetic coordinates of co-located points in both WGS84 84),,( WGSh and War Office 

1926 WARh),,(  were converted into Cartesian coordinates using Equation (13) (Hofmann-
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Wellenhof and Moritz, 2006). The results from Equation (13) for the WGS84 and War Office 

1926 are designated in this study as (X, Y, Z) WGS84 and (X, Y, Z) WAR, respectively. 

2

( ) cos cos

( )cos sin

[ (1 ) ]sin

X S h

Y S h

Z S e h

 

 



= +

= +

= − +

               

(13) 

where S is the radius of curvature in the prime vertical as defined in Equation (14). 

2 21 sin

a
S

e 
=

−
  (14) 

a and e are the semi-major axis and first eccentricity of the reference ellipsoid. 

 

Step 2: Determine Coordinate Transformation Parameters 

Out of the 19 co-located points, 14 (X, Y, Z )WGS84 and (X, Y, Z)WAR were purposefully 

chosen as reference points set defined as P = (P1, P2, … , P14). These points were applied to 

determine the transformation parameters for transforming WGS84 coordinates into Ghana 

War Office 1926. The remaining five points served as the independent reference test set 

defined as T = (T1, T2,…,T5) for the model validation (see Figure 1). The seven parameter 

Bursa-Wolf (Bursa, 1962; Wolf, 1963) transformation model (Equation 15) was applied. It is 

known that for 14 common points, 35 observation equations more than the seven unknown 

parameters to be estimated. This clearly creates an over-determined system of linear 

equations. The TLS technique can be applied to such situations to achieve the best estimates 

of the unknown parameters. Hence, the TLS procedure based on the Singular Value 

Decomposition (SVD) approach (Equation 5) was applied to Equation (15) to determine the 

unknown transformation parameters. These determined parameters consisted of three 

translation vectors, three rotational parameters and one scale factor. 

84

84

84

WAR WGSX

WAR Y WGS

ZWAR WGS

X XT

Y T R Y

TZ Z



    
    

= +
    
        

  (15) 

where TX, TY and TZ are the translation vectors along X-, Y- and Z-axes respectively of the 

two reference systems. η is the scale factor and R is the total rotational matrix (product of the 

rotation angles). 
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Step 3: Apply the Determined Transformation Parameters 

The seven transformation parameters determined in Step 2 were then used to transform the 14 

(X, Y, Z) WGS84 into the War Office 1926 datum. These newly transformed Cartesian 

coordinates are denoted in this study as (X, Y, Z) TLS NEW. Similarly, the transformation 

parameters were also applied to transform the five independent test points into War Office 

1926 datum. These transformed test coordinates are represented in this work as (X, Y, Z) TLS 

TEST. 

 

Step 4: Convert Cartesian Coordinates to Geodetic Coordinates 

The (X, Y, Z) TLS NEW and (X, Y, Z) TLS TEST obtained in Step 3 were then converted to 

geodetic coordinates using Bowring inverse method (Equations 16-18) (Bowring, 1976). The 

converted coordinates were denoted in this study as 1),,( NEWTLSh  and 1),,( TESTTLSh , 

respectively. 

2 3
1

2 3

sin
tan

cos

Z b

p e a

 




−  +
=  

− 
  (16) 

1tan
Y

X
 −  
=  

 
  (17) 

2 2cos sin 1 sinh p Z a e  = + − −   (18) 

 

where  is the parametric latitude (Equation (19)), b is the semi-minor axis of the ellipsoid, p 

is the perpendicular distance from the rotational axis (Equation (20)) and ε (Equation (21)) is 

the second eccentricity. 

1tan
aZ

bP
 −  
=  

 
  (19) 

2 2p X Y= +   (20) 

2

21

e

e
 =

−
  (21) 
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Step 5: Fuse TLS Results into RBFNN (Hybrid model) 

The reverse conversion in Step 4 was necessary in order to select the input variables that 

produces the best results when the RBFNN was trained. This is important because it has been 

found that the appropriate input parameters used have influence on the prediction accuracy of 

the ANN model (Dreiseitl and Ohno-Machado 2002; Ismail, Shabri, & Samsudin, 2012). In 

the light of that, several input parameters were tried and tested to determine the one that can 

produce the best transformation results. Firstly, (X, Y, Z) TLS NEW obtained in Step 3 was used 

as the input data and its corresponding (X, Y, Z) WAR was used as the output data in the 

RBFNN training. In the second scenario, 1),,( NEWTLSh obtained in Step 4 was used as the 

input data and WARh),,(  as the output data. In the third scenario, The RBFNN was trained 

using 1),( NEWTLS  obtained in Step 4 as the input variables and WAR),(   as the output 

variable. It was found that using the third case yielded better fusion of TLS and RBFNN 

results. Thus, the hybrid model was formed by using the TLS transformed coordinates as the 

input data with its corresponding coordinates in the Ghana War Office 1926 as the output 

data. When the training process was over, the hybrid calculation model for coordinate 

transformation in the study area was developed. 

 

Step 6: Transforming Coordinates with Hybrid Model (TLS-RBFNN) 

For any position in the study area, when it transformed geodetic coordinates are computed 

using the TLS algorithm (Steps 1 to 4), then its improved transformed coordinates can be 

calculated using the TLS-RBFNN developed in Step 5. In furtherance of this, the five testing 

points were used to test the capability of the TLS-RBFNN model developed. In that case, 

1),( TESTTLS  obtained in Step 4 was used as the input data in the optimum trained hybrid 

model and its corresponding known coordinates in the War Office 1926 denoted as 

TESTWAR),(  served as the target output. The new predicted output from the optimum 

trained hybrid model is represented as NEWWAR),(  . The NEWWAR),(   geodetic 

coordinates were then projected onto the Transverse Mercator 1o NW to obtain 2D projected 

grid coordinates in Easting (E) and Northing (N) using equations in Dzidefo (2011). The 

computed projected grid coordinates were then compared with the known grid coordinates for 
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statistical analysis. The map projection conducted was important because Ghana uses the 2D 

projected grid coordinate system for its surveying and mapping related activities. 

 

Step 7: Statistical Analysis 

In order to check the efficiency of TLS, RBFNN and TLS-RBFNN, residuals between the 

known and computed projected grid coordinates were estimated. Statistical evaluation metric 

presented in Section 4 were then used to quantify these residuals generated for results 

interpretation. 

 

Model Performance Criteria 

Performance criteria indicators (PCIs) such as Horizontal Error (HE), Root Mean Square 

Horizontal Error (RMSHE), Mean Horizontal Error (MHE), Standard deviation (SD), 

Maximum Error (Max Error) and Minimum Error (Min Error) were used to check the 

adequacy of the methods applied. The mathematical representations (Ziggah et al., 2019a) of 

the various PCIs are given by Equations (22) to (27). 
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where n is the total number of test data used, 
it

E and 
it

N represent the known Easting and 

Northing grid coordinates while 
ioE  and 

ioN are the computed grid coordinates given by the 

TLS, RBFNN and TLS-RBFNN, respectively. HE  is the average value of the horizontal 

error. 

 

 

 

RESULTS AND DISCUSSION 

Model Performance Analysis 

The RBFNN model which gave the optimum results was [2-14-2]. Thus, 2 inputs consisting 

of ),( 8484 WGSWGS  , 14 hidden neurons and ),( WARWAR   as the 2 outputs. The optimum 

TLS-RBFNN model comprises [2-14-2]. That is, 1),( NEWTLS  is the 2 inputs data, 14 

hidden neurons in the hidden layer and ),( WARWAR  as the 2 outputs. In this study, the 

criterion to determine the optimum RBFNN and TLS-RBFNN model was based on the 

concept of ANN generalisation. It is a well-known fact that generalisation provides a more 

convincing estimate on the validity of ANN models (Urolagin, Prema, & Subba Reddy, 

2011). That is, the ability of ANN model to perform well when untrained data is presented to 

the network. To achieve this, the Mean Square Error (MSE) criterion was employed. That is, 

the model structure that produced the least MSE when the test data was fed into the RBFNN 

and TLS-RBFNN trained models was selected as the optimum model. For the TLS, the 

derived transformation parameters and their respective standard deviations of the 14 common 

points for transforming WGS84 coordinates to War Office 1926 datum are presented in Table 

1. 

 

Table 1 Total Least Squares Estimated Transformation Parameters 

Parameter Value SD 

Tx (m) -153.0127 11.6995 

Ty (m) 63.7693 22.4533 
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Tz (m) 368.0575 21.1464 

Rx (rad) -1.07E-06 1.86E-06 

Ry (rad) -6.39E-06 3.32E-06 

Rz (rad) 4.84E-06 3.50E-06 

S (ppm) -7.49E-06 1.82E-06 

 

Analysis of Table 2 shows the coordinate differences (∆E, ∆N) between the known and 

computed projected grid coordinates from TLS, RBFNN and TLS-RBFNN, respectively. 

 

 

 

Table 2 Deviation of transformed test coordinates from existing coordinates 

Test Point 
TLS  RBFNN TLS-RBFNN 

∆E(m) ∆N(m) HE (m) ∆E(m) ∆N(m) HE (m) ∆E(m) ∆N(m) HE (m) 

T1 0.0793 1.7516 1.7534 0.2608 1.7445 1.7638 -0.2013 0.0387 0.2050 

T2 0.3799 -0.3783 0.5361 0.5529 -0.0397 0.5543 -0.1618 0.4065 0.4376 

T3 -0.7647 0.0937 0.7704 -0.6216 -0.4831 0.7873 0.2997 0.5741 0.6476 

T4 -1.5285 -0.1834 1.5394 -0.8093 -0.3765 0.8926 0.0483 -0.3246 0.3282 

T5 -1.2642 -1.4062 1.8909 -0.7940 -0.5080 0.9426 0.0580 1.1290 1.1305 

Mean -0.6196 -0.0245 1.2980 -0.2822 0.0674 0.9881 0.0086 0.3647 0.5498 

SD 0.8292 1.1432 0.6074 0.6417 0.9559 0.4587 0.2012 0.5503 0.3631 

 

A careful study of the results in Table 2 reveals how much the computed Easting and 

Northing coordinates produced by TLS, RBFNN and TLS-RBFNN of the test points vary in 

conjunction with the ideal residual threshold value of zero. These values (∆E, ∆N) give a 

better indication on the amount of discrepancies in the TLS, RBFNN and TLS-RBFNN 

computed coordinates compared to the known coordinates by way of errors. From Table 2, 

there is quantitative evidence of improvement of the TLS and RBFNN results by TLS-

RBFNN. This could mean that the calibration capability of TLS-RBFNN architecture was 

better for the given training data and that has greater learning abilities compared to 

independently applying TLS and RBFNN to the data. In continuance of this, the result in 
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Table 2 shows that the hybrid TLS-RBFNN model could generalise better with the test data 

than TLS and RBFNN. The SD values (Table 2) of the coordinate differences estimated 

signify a practical expression for the precision of the computed coordinates given by TLS, 

RBFNN and TLS-RBFNN, respectively. In Table 2, it can be seen that TLS-RBFNN had the 

least SD values indicating the limit of the error bound by which every value within the 

computed test coordinates values varies from the most probable value. 

 

Table 3 provides summary performance statistics of the total horizontal errors for TLS, 

RBFNN and TLS-RBFNN, respectively. From Table 3, it can be noticed that the hybrid TLS-

RBFNN showed better results as compared to the other two techniques. Thus, TLS-RBFNN 

showed an improved percentage values of 76.870 and 43.140 in the transformation accuracy 

(RMSHE) for TLS and RBFNN. In terms of MHE, TLS-RBFNN improved TLS and RBFNN 

results by 74.820 and 43.830% respectively. For the maximum horizontal error, 76.040 and 

63.330% were the percentage improvements by TLS-RBFNN. In the case of the minimum 

horizontal error, 33.110 and 34.930% were the improved percentage values. The inference 

made here is that TLS and RBFNN could not model the uncertainties of coordinates related to 

War Office 1926 and WGS84 in an effective way as compared to the TLS-RBFNN. On the 

basis of the SD values, TLS-RBFNN improved TLS and RBFNN by 24.430 and 9.560% 

(Table 3) with regards to the transformation precision. 

 

Table 3 Total Horizontal Residuals of the Coordinate Differences Using the Three Methods 

PCI 
TLS 

(m) 

RBFNN 

(m) 

TLS-RBFNN 

(m) 

Improvement 

for TLS (%) 

Improvement 

for RBFNN 

(%) 

RMSHE 1.4072 1.0699 0.6385 76.870 43.140 

MHE 1.2980 0.9881 0.5498 74.820 43.830 

Max HE 1.8909 1.7638 1.1305 76.040 63.330 

Min HE 0.5361 0.5543 0.2050 33.110 34.930 

SD 0.6074 0.4587 0.3631 24.430 9.560 

 

Model Selection Criterion 
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To select the best performing model, the Bayesian Information Criterion (BIC) was explored. 

In this study, the HE values for each of the five test points were used to calculate the BIC 

value. The BIC was chosen because it tends to favour models with fewer parameters 

compared to other information criteria because its penalty term is smaller (Burnham and 

Anderson, 2002). The BIC is represented mathematically (Equation (28)) as 

)ln(ln nK
n

SSE
nBIC +








=                  (28) 

where n  denotes the number of observations, SSE  is the sum of squares of the residuals and 

K  is defined as the penalty term which corresponds to the number of unknown parameters in 

a coordinate transformation model (Table 4). Thus, the SSE is acting as an optimality 

criterion to aid in the BIC model selection. Therefore, a model is selected as the most suitable 

candidate model if it gives the least estimated BIC value. With this in mind, it can be inferred 

from Table 4 that TLS-RBFNN is more feasible for transforming coordinates between 

WGS84 datum and War Office 1926 datum. 

Table 4 Bayesian Information Criterion Model Selection Results 

Method K parameter BIC Value 

TLS 7 14.6817 

RBFNN 2 3.8944 

TLS-RBFNN 2 -1.2669 

 

Coordinate Transformation Using Entire Dataset 

Ghana GNSS reference station network at the moment covers only the Mid-Southern parts 

with expansion to cover the North and the whole country is yet to be done. Therefore, due to 

limited data availability in the study area (Ghana), a particular cross-validation technique was 

adopted to test the potential of the already determined optimal models of TLS, RBFNN and 

TLS-RBFNN using the entire dataset. In this approach, the testing data of five points were 

swapped in the optimized models with the 19 co-located points. Thus, the 19 points were 

applied as the testing data in the optimum RBFNN and TLS-RBFNN structure of [2-14-2] 

which has already been formed using the training data of 14 co-located points. Similarly, the 

Assessing the Integration of Total Least Squares and Radial Basis Function Neural Network for Coordinate

Transformation (11905)

Bernard Kumi-Boateng and Joseph Edem Vigbedor (Ghana)

FIG Working Week 2023

Protecting Our World, Conquering New Frontiers 

Orlando, Florida, USA, 28 May–1 June 2023



 

 

transformation parameters determined using the TLS approach were also used to transform 

the whole dataset. 

 

Mathematically, the test results produced using the entire dataset will give a better indication 

of all possible variations in the data and that will enable the model developer and users to 

ascertain the strength and generalisation capability of the developed models should the data 

size increase in the study area. In addition, it will provide a realistic estimate of the predictive 

potential of the TLS, RBFNN and TLS-RBFNN across the entire study area. This procedure 

has been adopted in several studies in order to check the overall generalisation of ANNs 

(Konaté, Pan, Khan, & Ziggah, 2015; Ziggah et al., 2016b). The entire data testing results 

achieved by TLS, RBFNN and TLS-RBFNN are presented in Table 5. 

 

Table 5 Deviation of Transformed Test Coordinates Using the Whole Data set 

  

Point 

TLS RBFNN TLS-RBFNN 

∆E (m) ∆N(m) HE(m) ∆E (m) ∆N(m) HE(m) ∆E (m) ∆N(m) HE(m) 

T1 -0.3692 1.1937 1.2495 -0.4021 0.8442 0.9351 -0.1086 -0.4933 0.5051 

T2 -0.1522 0.9330 0.9454 -0.2589 0.8414 0.8803 -0.0110 0.3605 0.3607 

T3 0.4910 -1.6776 1.7479 0.2246 -1.1899 1.2109 -0.0064 -0.0365 0.0371 

T4 -0.6727 -0.6522 0.9370 -0.5209 -1.3907 1.4851 -0.0978 -0.2829 0.2993 

T5 0.0600 -0.9153 0.9173 -0.2790 -0.4701 0.5466 -0.0894 -0.6217 0.6281 

T6 0.2516 0.5738 0.6265 0.0827 0.8848 0.8886 0.2740 0.9442 0.9831 

T7 0.3772 -0.1226 0.3966 0.2504 -0.1123 0.2744 0.0615 0.5202 0.5238 

T8 0.3940 -0.3777 0.5458 0.1609 -0.1136 0.1969 0.3702 0.1237 0.3903 

T9 -0.4205 -0.4637 0.6260 -0.7729 -0.1023 0.7796 -0.6297 -0.4714 0.7866 

T10 0.3165 0.7873 0.8485 0.3901 0.0289 0.3912 -0.0109 0.3524 0.3526 

T11 -0.3867 0.5759 0.6937 -0.5904 0.1356 0.6057 0.1550 0.2527 0.2964 

T12 0.6269 0.0195 0.6272 0.3452 -0.1077 0.3616 0.3119 -0.5031 0.5919 

T13 -0.4063 0.3972 0.5682 -0.6027 0.3222 0.6834 -0.2460 -0.1002 0.2656 

T14 -0.1628 -0.2977 0.3393 -0.4740 0.1553 0.4988 0.0473 -0.0497 0.0686 

T15 0.0793 1.7516 1.7534 0.2608 1.7445 1.7638 -0.1920 -1.5900 1.6016 
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T16 0.3799 -0.3783 0.5361 0.5529 -0.0397 0.5543 -0.1171 0.7646 0.7735 

T17 -0.7647 0.0937 0.7704 -0.6216 -0.4831 0.7873 0.3221 0.5301 0.6203 

T18 -1.5285 -0.1834 1.5394 -0.8093 -0.3765 0.8926 -0.0032 0.0248 0.0251 

T19 -1.2642 -1.4062 1.8909 -0.7940 -0.5080 0.9426 0.0570 1.1290 1.1304 

SD 0.5952 0.8661 0.4816 0.4589 0.7321 0.4001 0.2337 0.6379 0.3964 

 

Judging from the outcomes in Table 5, it can be inferred on the basis of the HE values that 

TLS-RBFNN model achieved satisfactory testing results than RBFNN and TLS. This 

demonstrates that TLS-RBFNN has good generalisation capabilities across the entire study 

area. Hence, it can evidently be stated that the TLS-RBFNN computed projected grid 

coordinates (testing outputs) are in better agreement to the known projected grid coordinates.  

 

In addition, the lowest SD values (Table 5) obtained by TLS-RBFNN revealed its 

generalisation superiority to the other methods. These SD values show the range of precision 

of the TLS, RBFNN and TLS-RBFNN computed projected grid coordinates on a normal 

distribution curve. In line with this, it can be stated that the TLS-RBFNN transformation 

results are more precise and accurate than the TLS and RBFNN. Intuitive interpretation of 

Figure 4 shows that the TLS-RBFNN generalised better across the entire data for the study 

area than the TLS and RBFNN, respectively. 
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Figure 4. Horizontal Displacement of the Entire Data (testing data) 

 

As evident from Table 6, the TLS-RBFNN had a transformation accuracy of 0.6628 m while 

1.0362 m and 0.8652 m were respectively produced by TLS and RBFNN. In percentage wise, 

the TLS and RBFNN transformation accuracies were improved by 37.34 and 20.24, 

respectively. These signify the degree at which the hybrid TLS-RBFNN model could improve 

the transformation results in the study area rather than independently applying TLS and 

RBFNN. Taking into account the average dispersion of horizontal errors (MHE), it can be 

seen that when TLS-RBFNN was applied the TLS and RBFNN results were improved by 

38.52% and 23.36%. The maximum and minimum HE (Table 6), on the other hand, signify 

the quality of the results produced by the three methods with respect to the range of error 

achievable when TLS, RBFNN and TLS-RBFNN were applied in the study area. An 

observation from Table 6 shows that independently applying TLS and RBFNN in the study 

area will achieve maximum HE values of 1.8909 m and 1.7638 m with 0.3393 m and 0.1969 

m being the minimum. However, should the TLS-RBFNN be applied, TLS and RBFNN 

results could be improved by 28.93% and 16.22% for their maximum HE. In relation to 

minimum HE, 31.42% and 17.18% could be obtained. On account of the SD calculated values 

(Table 6), it could be seen that a transformation precision of 0.3964 m was achieved by TLS-

RBFNN while 0.4816 m and 0.4001 m were realised by TLS and RBFNN respectively. The 
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TLS-RBFNN results indicate percentage improvement of TLS and RBFNN results by 8.52% 

and 0.37%. 

 

Table 6 Total Horizontal Residuals using the Entire data 

PCI TLS (m) RBFNN(m) TLS-RBFNN(m) 

Improvement 

for TLS (%) 

Improvement 

for RBFNN (%) 

RMSHE 1.0362 0.8652 0.6628 37.340 20.240 

MHE 0.9242 0.7726 0.539 38.520 23.360 

Max HE 1.8909 1.7638 1.6016 28.930 16.220 

Min HE 0.3393 0.1969 0.0251 31.420 17.180 

SD 0.4816 0.4001 0.3964 8.520 0.370 

 

The computed BIC values (Table 7) based on the HE (Table 5) of the entire data set showed 

that the combination of TLS and RBFNN had a better capability of producing improved 

transformation results than when they are separately applied. This is because among the three 

methods TLS-RBFNN had the least BIC value and thus was selected as the better technique 

over TLS and RBFNN, respectively. Hence, on the basis of the quantitative analyses 

presented in this study, it can logically be stated that the potential of the hybrid TLS-RBFNN 

approach in the coordinate transformation process for Ghana geodetic reference network has 

been duly investigated. 

 

Table 7 Bayesian Information Criterion Model Selection Using Whole Data 

Method K Parameter BIC Value 

TLS 7 12.6190 

RBFNN 2 -2.2856 

TLS-RBFNN 2 -12.4093 

 

CONCLUSIONS AND RECOMMENDATION 
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An experiment to combine TLS and RBFNN in coordinate transformation process has been 

presented. This hybrid TLS-RBFNN approach was applied to data in Ghana geodetic 

reference network. The major point is to test the potential of such integrated approach in 

transforming coordinates from WGS84 to War Office 1926 in Ghana geodetic reference 

network. The quantitative analyses revealed that the hybrid TLS-RBFNN offered better 

transformation results compared to TLS and RBFNN. This clearly indicates that the TLS-

RBFNN can modify its behaviour to improve its learning ability and to generalise well to 

unseen data (test data). In this study, the TLS-RBFNN approach gave overall transformation 

accuracy (RMSHE) of 0.6628 m while 1.0362 m and 0.8652 m were respectively achieved by 

TLS and RBFNN for the entire data test points. In terms of percentage, the obtained values 

for TLS and RBFNN were improved by TLS-RBFNN by 37.340% and 20.240%. Similar 

performance enhancement were observed for the transformation precision (SD values), 

maximum and minimum recorded horizontal errors as well as the average horizontal error 

(MHE). On the strength of these transformation accuracies obtained in this study, it can be 

stated that the hybrid approach (TLS-RBFNN) results are logical and related to the legal 

regulations set by the Ghana Survey and Mapping Division of Lands Commission for 

cadastral applications and plan production. To conclude, it must be emphasised that the idea 

behind this study is not to take away the significance of the classical transformation models 

but to show from a practical perspective how RBFNN can be more effective in solving 

coordinate transformation problems when combined with the classical approach. This study, 

therefore, has demonstrated the potential and the resulting consequences of using the TLS 

integrated with RBFNN than applying the TLS and RBFNN independently in coordinate 

transformation process within Ghana geodetic reference network. Finally, future research 

works will focus on generalising the proposed hybrid approach across the entire country 

(Ghana) with more data availability upon completion of the GNSS reference stations in the 

near future. It is also suggested that such works can be replicated in countries that have 

similar geodetic network infrastructure like Ghana. Additionally, it is also recommended that 

other hybrid models of TLS and artificial intelligence methods must be carried out to help 

select the best performing hybrid transformation model for Ghana. 
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