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SUMMARY  12 

 13 

Mobile mapping systems (MMS) such as uncrewed aerial vehicles (UAVs) and wheeled 14 

platforms are widely used for a variety of applications such as precision agriculture, coastal 15 

monitoring, digital forestry, transportation management, infrastructure monitoring, bulk 16 

material estimation, and archaeological documentation. MMS are usually equipped with 17 

integrated global navigation satellite systems/inertial navigation systems (GNSS/INS) as well 18 

as imaging (e.g., RGB, multispectral, and hyperspectral cameras) and ranging (e.g., LiDAR) 19 

sensors. UAVs are becoming a viable alternative for small area mapping due to their ease of 20 

deployment, low cost, ability to fill an important gap between aerial and proximal mapping 21 

platforms, miniaturization/improvement of GNSS/INS georeferencing technologies, and 22 

proliferation of imaging/ranging sensors operating in different portions of the electromagnetic 23 

spectrum.  24 

Integration of image and LiDAR data can provide a comprehensive 3D model of the area of 25 

interest. For such integration, ensuring a good alignment of derived products from single or 26 

several platforms is critical. Although many works have been conducted on this topic, there is 27 

still a need for a rigorous integration approach that minimizes the discrepancy between imagery 28 

and LiDAR data/products caused by inaccurate system calibration parameters and/or trajectory 29 

artifacts. This study proposes a tightly–coupled camera/LiDAR integration workflow for UAV 30 

and wheeled remote sensing systems aided by a GNSS/INS unit. More specifically, the paper 31 

presents a unified multi–sensor advanced triangulation (UMSAT), which can handle point, 32 

linear, and areal features derived from imaging and ranging remote sensing systems aided by 33 

GNSS/INS position and orientation unit. Through UMSAT, a general environment for system 34 

calibration and/or trajectory refinement will be explored for improving derived data/products 35 

from imaging and ranging remote sensing systems while focusing on transportation–related 36 

datasets. Experimental results from real datasets will be presented together with 37 

recommendations for future research to improve the performance of UMSAT in GNSS–38 

challenging, and potentially GNSS–denied, environments. 39 
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1. Introduction 48 

Utilization of remote sensing technologies is becoming the norm for many applications due to 49 

their ability to map large areas in a short time at a reasonable cost. More specifically, the 50 

emergence of passive and active remote sensing modalities operating in different portions of 51 

the electromagnetic spectrum allows for the derivation of a rich set of information useful for 52 

various applications. Improvements and lower–cost of direct georeferencing technologies – i.e., 53 

integrated Global Navigation Satellite Systems/Inertial Navigation Systems (GNSS/INS) – 54 

enable control–free mapping. In spite of the improving capabilities of spaceborne and airborne 55 

remote sensing platforms, they do not provide reasonable spatial/temporal resolution at an 56 

affordable cost. Modern mobile mapping systems (MMS) – such as uncrewed aerial vehicles 57 

(UAVs) and wheeled systems – have emerged as promising platforms (Guan et al., 2014; Nex 58 

& Remondino, 2014). Using these systems is motivated by their low cost, ease of deployment, 59 

high maneuverability, and fine spatial/temporal resolution mapping. Recent availability of 60 

miniaturized sensing and direct georeferencing units facilitates the use of such platforms in a 61 

wide range of applications, such as precision agriculture, coastal monitoring, digital forestry, 62 

transportation management, infrastructure monitoring, and archaeological documentation. 63 

Imaging sensors including RGB and multispectral/ hyperspectral (MS/HS) cameras are widely 64 

used. The majority of RGB cameras are based on a frame imaging mechanism, providing 65 

imagery in a two–dimensional (2D) raster data structure with spectral information. With recent 66 

developments in Structure from Motion (SfM) algorithms (Westoby et al., 2012), one can 67 

generate dense point clouds. However, this reconstruction is contingent on adequate 68 

overlap/side–lap among neighboring images and establishing sufficient matches. On the other 69 

hand, most HS cameras are based on push–broom technology – also known as line cameras – 70 

which capture 1D images at a time with fine frequency bands across the spectrum. Deriving 3D 71 

information from these cameras is difficult as there is no overlap between the captured 1D 72 

images (Hasheminasab et al., 2021). As for ranging sensors, Light Detection and Ranging 73 

(LiDAR) can directly provide 3D points with high geometric accuracy. Nevertheless, the lack 74 

of spectral/color information makes it difficult to derive semantic information for the acquired 75 

scene. Due to the complementary characteristics of imaging and ranging sensors, the integration 76 

of camera and LiDAR sensors can overcome their individual limitations, resulting in an 77 

accurate and better description of the object space. This integration will enhance the process of 78 

feature extraction, scene understanding, and visualization of derived products (Caltagirone et 79 

al., 2019). 80 
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Meaningful integration of multi–temporal data/products from different modalities onboard 81 

single or multiple systems is contingent on their positional quality. Accurate system calibration 82 

– including the sensor’s interior orientation parameters (IOP) and mounting parameters relating 83 

the sensors to the INS’ Inertial Measurement Unit (IMU) body frame – and trajectory 84 

information are essential for ensuring the positional accuracy. Several studies have addressed 85 

the problem of image/LiDAR integration by focusing on system calibration. Camera/LiDAR 86 

calibration techniques estimate the system parameters by minimizing the discrepancy between 87 

conjugate features extracted from both modalities through a Least Squares Adjustment (LSA) 88 

procedure. Depending on the type of utilized features, calibration techniques can be categorized 89 

into target–based and target–less approaches. For example, Zhang and Pless (2004) used a 90 

planar checkerboard for establishing the mounting parameters relating camera and 2D LiDAR 91 

units. Several studies extended this work for calibrating systems equipped with camera and 3D 92 

LiDAR sensors (Mirzaei et al., 2012; Ravi et al., 2018; Verma et al., 2019). In addition to point–93 

to–plane geometric constraints, other feature correspondences such as line–to–plane (Zhou, 94 

2014) and point–to–point (Beltran et al., 2022) have been also adopted using custom–built 95 

targets. However, these approaches are time–consuming and might not be practical when 96 

frequent system calibration is required. Early works dealing with in–situ calibration using 97 

target–less strategies were based on manual identification of conjugate natural points and linear 98 

features in indoor scenes (Moghadam et al., 2013; Scaramuzza et al., 2007). Several efforts 99 

have been made toward developing fully–automated camera/LiDAR calibration frameworks. 100 

The majority of these techniques – also referred to as motion–based approaches – use visual 101 

odometry (Schneider et al., 2013) or SfM (Glira et al., 2016; Li et al., 2019; Zhou et al., 2021) 102 

to establish conjugate features in image and LiDAR data. More specifically, these techniques 103 

rely on deriving image–based point clouds and then matching those 3D points to LiDAR–104 

derived features. Trajectory information is usually refined in these approaches to achieve the 105 

best alignment between camera and LiDAR data. 106 

Despite that extensive body of work that has been conducted, there is still a need for a rigorous 107 

integration approach that minimizes the discrepancy between camera and LiDAR data/products 108 

caused by inaccurate system calibration parameters and/or trajectory artifacts. This study 109 

proposes a semi–automated, tightly–coupled camera/LiDAR integration workflow for UAV 110 

and wheeled remote sensing systems aided by a GNSS/INS unit. More specifically, the paper 111 

presents a unified multi–sensor advanced triangulation (UMSAT), which can handle point, 112 

linear, and areal features derived from imaging (e.g., frame cameras and push–broom scanners) 113 

and ranging modalities aided by GNSS/INS position and orientation unit. 114 

2. Methodology 115 

The success of any multi–modal geospatial data integration activity is contingent on ensuring 116 

the positional quality of such data (e.g., proper georeferencing of the used sensors together with 117 

comprehensive modeling of the point positioning equations relating their measurements to the 118 

respective ground coordinates). Before introducing the proposed UMSAT framework, the point 119 

positioning models are first introduced. In general, establishing the point positioning equations 120 

for either LiDAR or imaging systems proceeds in two steps. First, we need to define the laser 121 
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beam or imaging ray relative to the sensor coordinate system. This definition is based on the 122 

sensor measurements (i.e., laser range/pointing direction for a LiDAR and image coordinate 123 

measurements for a camera) together with the IOP of the used sensor (i.e., parameters 124 

describing the encoder mechanism for a LiDAR or principal point coordinates, principal 125 

distance, and distortion parameters for a camera). Second, the position and orientation of the 126 

laser beam or imaging ray relative to the mapping frame are established through the Exterior 127 

Orientation Parameters (EOP) that describe the position and orientation of the sensor relative 128 

to the mapping frame. For a GNSS/INS–assisted system, the EOP are derived using the post–129 

processed GNSS/INS trajectory and mounting parameters relating these sensors to the 130 

corresponding IMU body frame. 131 

The point positioning models for LiDAR and frame/line camera units are described in 132 

Equations (1)–(3), respectively. These models are also graphically explained in Figure 1. In 133 

Equation (1), 𝑟𝐼
𝑙𝑢(𝑡)

 denotes the position of the footprint of a laser beam, emitted at time 𝑡, 134 

relative to the laser unit frame; 𝑟𝑏(𝑡)
𝑚  and 𝑅𝑏(𝑡)

𝑚  are the position and orientation of the IMU body 135 

frame relative to the mapping frame at time 𝑡; 𝑟𝑙𝑢
𝑏  and 𝑅𝑙𝑢

𝑏  represent the lever arm and boresight 136 

rotation matrix relating the laser unit and IMU body frame coordinate systems. The derivation 137 

of 𝑟𝐼
𝑙𝑢(𝑡)

 is based on the range/pointing direction measurements of the LiDAR unit as well as 138 

its IOP. For the point positioning for frame and line imaging systems (Equations (2) and (3)), 139 

𝑟𝑖
𝑐𝑓(𝑡)

 and 𝑟𝑖
𝑐𝑙(𝑡)

 represent the imaging rays for point 𝑖  relative to the frame/line camera 140 

coordinate systems at time 𝑡. This term is derived from the image coordinates of point 𝑖 (𝑥𝑖
  and 141 

𝑦𝑖
 ) and camera IOP, including the principal point coordinates of used camera (𝑥𝑝

  and 𝑦𝑝
 ), 142 

principal distance (𝑓), as well as distortions in the 𝑥 and 𝑦 coordinates for image point 𝑖 (𝑑𝑖𝑠𝑡𝑥𝑖
 143 

and 𝑑𝑖𝑠𝑡𝑦𝑖
). The main difference between frame and line cameras is that while both x, y 144 

components of image coordinates for the former have variable values depending on image point 145 

location, for the latter, the y coordinates are always constant – e.g., 𝑦𝑖
  = 0 for systems with the 146 

scan line vertically below the camera perspective center. 𝑟𝑐𝑓
𝑏 /𝑅𝑐𝑓

𝑏  and 𝑟𝑐𝑙
𝑏 /𝑅𝑐𝑙

𝑏  represent the lever 147 

arm and boresight rotation matrix relating the frame camera/line camera and IMU body frame 148 

coordinate systems. Different from LiDAR, image–based 3D reconstruction involves an 149 

unknown scale factor (𝜆(𝑖, 𝑐𝑓, 𝑡)/𝜆(𝑖, 𝑐𝑙, 𝑡) for image point 𝑖 captured by frame camera 𝑐𝑓 or 150 

line camera 𝑐𝑙 at time 𝑡), which needs to be estimated. 151 

𝑟𝐼
𝑚 = 𝑟𝑏(𝑡)

𝑚 + 𝑅𝑏(𝑡)
𝑚 𝑟𝑙𝑢

𝑏 + 𝑅𝑏(𝑡)
𝑚 𝑅𝑙𝑢

𝑏 𝑟𝐼
𝑙𝑢(𝑡)

 (1) 

𝑟𝐼
𝑚 = 𝑟𝑏(𝑡)

𝑚 + 𝑅𝑏(𝑡)
𝑚 𝑟𝑐𝑓

𝑏 + 𝜆(𝑖, 𝑐𝑓, 𝑡)𝑅𝑏(𝑡)
𝑚 𝑅𝑐𝑓

𝑏 𝑟𝑖
𝑐𝑓(𝑡)

, 𝑟𝑖
𝑐𝑓(𝑡)

= [ 

𝑥𝑖
 −  𝑥𝑝

 − 𝑑𝑖𝑠𝑡𝑥𝑖

𝑦𝑖
 −  𝑦𝑝

 − 𝑑𝑖𝑠𝑡𝑦𝑖

−𝑓

] (2) 

𝑟𝐼
𝑚 = 𝑟𝑏(𝑡)

𝑚 + 𝑅𝑏(𝑡)
𝑚 𝑟𝑐𝑙

𝑏 + 𝜆(𝑖, 𝑐𝑙, 𝑡)𝑅𝑏(𝑡)
𝑚 𝑅𝑐𝑙

𝑏 𝑟𝑖
𝑐𝑙(𝑡)

, 𝑟𝑖
𝑐𝑙(𝑡)

= [ 

𝑥𝑖
 −  𝑥𝑝

 − 𝑑𝑖𝑠𝑡𝑥𝑖

0 −  𝑦𝑝
 − 𝑑𝑖𝑠𝑡𝑦𝑖

−𝑓

] (3) 
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Figure 1. Schematic diagram of the point positioning principle for LiDAR and frame/line 

cameras units onboard a GNSS/INS–assisted MMS. 

From the LiDAR/image–based point positioning equations, it is evident that accurate trajectory 153 

information and system calibration parameters (including sensor IOP and mounting parameters) 154 

are critical for producing properly georeferenced data from LiDAR and imaging systems. 155 

Therefore, to improve the positional quality of acquired data, a system–driven triangulation 156 

strategy is proposed. As illustrated in Figure 2, the triangulation aims at minimizing 157 

discrepancies among conjugate features (including point, linear, and areal features) captured by 158 

different sensor modalities from single/multiple systems through what will be denoted as 159 

universal multi–sensor advanced triangulation (UMSAT). 160 

 
Figure 2. Schematic diagram of the functionality of the proposed UMSAT. 

Point features are mainly adopted for cameras. The derivation of image–based object points can 161 

be conducted through SfM algorithms. For an object point 𝐼 and its corresponding conjugate 162 

image points, the back–projection error is adopted as a cost function in UMSAT. Using the 163 
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frame camera as an example, the point positioning equation can be reformulated into Equation 164 

(4); to eliminate the unknown scale factor from this equation, the first and second rows are 165 

divided by the third one, and the image point coordinates are expressed as Equation (5). Based 166 

on this equation, the differences between observed image coordinates and predicted ones using 167 

estimated unknowns (i.e., back–projection errors) are minimized in the LSA process. 168 

𝑟𝑖
𝑐𝑓(𝑡)

=
1

𝜆(𝑖, 𝑐𝑓, 𝑡)
[𝑅𝑏

𝑐𝑓
𝑅𝑚

𝑏(𝑡)
(𝑟𝐼

𝑚 − 𝑟𝑏(𝑡)
𝑚 − 𝑅𝑏(𝑡)

𝑚 𝑟𝑐𝑓
𝑏 )] =

1

𝜆(𝑖, 𝑐𝑓, 𝑡)
[
𝑁𝑥

𝑁𝑦

𝐷

] (4) 

𝑥𝑖 = −𝑐
𝑁𝑥

𝐷
+ 𝑥𝑝 + 𝑑𝑖𝑠𝑡𝑥𝑖

 

𝑦𝑖 = −𝑐
𝑁𝑦

𝐷
+ 𝑦𝑝 + 𝑑𝑖𝑠𝑡𝑦𝑖

 

(5) 

In terms of linear features, they can be extracted from images and LiDAR data. For imagery, 169 

the Line Segment Detector (LSD) (Grompone Von Gioi et al., 2010) can be used to 170 

automatically derive image linear features. For LiDAR data, linear features could be derived 171 

through a segmentation process followed by Principal Component Analysis (PCA) analysis. In 172 

UMSAT, an object space linear feature is represented by two endpoints 𝑃𝐴  and 𝑃𝐵 . Two 173 

optimization target functions are implemented for minimizing the discrepancies between 174 

conjugate image/LiDAR lines. The involved quantities in the two target functions are 175 

schematically illustrated in Figure 3. The LiDAR optimization target function minimizes the 176 

normal distance between the mapping coordinates of a LiDAR point 𝐼 and the linear feature it 177 

belongs to (defined by the two endpoints 𝑃𝐴  and 𝑃𝐵 ). This constraint is mathematically 178 

described in Equation (6), where ‖𝑥‖ represents the 𝐿2–norm of the vector 𝑥, 𝑟𝑃𝐴 
𝑚  and 𝑟𝑃𝐵 

𝑚  are 179 

the object coordinates of the two endpoints, and 𝑟𝐼
𝑚 is the coordinates of LiDAR point 𝐼. The 180 

image optimization target function forces the vector from the perspective center (PC) to an 181 

image point 𝑖 along the linear feature (𝑟𝑃𝐶−𝑖
𝑚 ) to lie on the plane defined by the PC and endpoints 182 

of the object line (i.e., the plane defined by vectors 𝑟𝑃𝐶−𝑃𝐴 
𝑚  and 𝑟𝑃𝐶−𝑃𝐵

𝑚 , as shown in Figure 3). 183 

This constraint is mathematically presented by the triple product in Equation (7), where 𝑟𝑃𝐶−𝑃𝐴

𝑚  184 

is defined by 𝑟𝑃𝐴

𝑚 − 𝑟𝑐(𝑡)
𝑚  with 𝑟𝑐(𝑡)

𝑚  representing the camera position relative to the mapping 185 

frame at time 𝑡; and 𝑟𝑃𝐶−𝑖
𝑚  is the vector from the camera perspective center to an intermediate 186 

image point 𝑖 along the line in the mapping frame as represented as 𝑅𝑏(𝑡)
𝑚 𝑅𝑐

𝑏𝑟𝑖
𝑐(𝑡)

. To analyze 187 

the residual of such constraint following the LSA, the angle 𝛼 between the vector 𝑟𝑃𝐶−𝑖
𝑚  and the 188 

plane defined by the PC and object line endpoints 𝑃𝐴/𝑃𝐵 (as shown in Figure 3) is evaluated. 189 

Areal features are only used for LiDAR sensors as they cannot provide redundant information 190 

for imagery. Areal features can be automatically extracted from LiDAR data through various 191 

approaches. In UMSAT, areal features are modeled as planes. The respective target function 192 

minimizes the normal distance between the LiDAR point 𝐼 to the areal feature it belongs to, as 193 

mathematically described in Equation (8). In this equation, 𝐴, 𝐵, 𝐶, 𝐷 are the plane parameters 194 

and (𝑋𝐼, 𝑌𝐼 , 𝑍𝐼) are the coordinates of LiDAR point 𝐼 in the mapping frame.  195 
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‖(𝑟𝑃𝐵

𝑚 − 𝑟𝑃𝐴

𝑚 ) × (𝑟𝑃𝐵

𝑚 − 𝑟𝐼
𝑚)‖

‖𝑟𝑃𝐵

𝑚 − 𝑟𝑃𝐴

𝑚‖ 
= 0 (6) 

(𝑟𝑃.𝐶.−𝐴
𝑚 × 𝑟𝑃.𝐶.−𝐵

𝑚 ) ∙ 𝑟𝑃.𝐶.−𝑖
𝑚 = 

([𝑟𝑃𝐴

𝑚 − [𝑟𝑏(𝑡)
𝑚 + 𝑅𝑏(𝑡)

𝑚 𝑟𝑐
𝑏]] × [𝑟𝑃𝐵

𝑚 − [𝑟𝑏(𝑡)
𝑚 + 𝑅𝑏(𝑡)

𝑚 𝑟𝑐
𝑏]]) ∙ 𝑅𝑏(𝑡)

𝑚 𝑅𝑐
𝑏𝑟𝑖

𝑐(𝑡)
= 0 

(7) 

 
Figure 3. Schematic illustration of image/LiDAR points along the linear feature for the 

SMART system (points I and i represent the points along the linear feature observed by 

LiDAR and camera, respectively). 

𝐴𝑋𝐼 + 𝐵𝑌𝐼 + 𝐶𝑍𝐼 + 𝐷 = 0 (8) 

The involved parameters in the above optimization functions include the respective sensor’s 196 

IOP and mounting parameters, trajectory information at the timestamp of the observation, and 197 

parameters for the respective object point, linear, or areal feature. In this study, trajectory 198 

information is refined by estimating corrections (𝛿𝑟𝑏(𝑡)
𝑚 , 𝛿𝑅𝑏(𝑡)

𝑚 )  to the original 199 

position/orientation parameters derived from the post–processed GNSS/INS observations. 200 

Solving for the trajectory corrections at the timestamp for every camera/LiDAR observation is 201 

not recommended as it would cause over–parametrization in the LSA. Since we are dealing 202 

with a platform that has a relatively smooth trajectory with moderate dynamics, the original 203 

high–frequency (e.g., 100–200 Hz) trajectory is down–sampled (i.e., using a down–sampling 204 

time interval Δ𝑇). The down–sampled trajectory points are henceforth denoted as trajectory 205 

reference points, as shown in Figure 4. The corrections to the trajectory parameters at a specific 206 

observation timestamp are then modeled as a 𝑝𝑡ℎ–order polynomial function of the unknown 207 

corrections at its 𝑛  neighboring trajectory reference points. Symbolically, this polynomial 208 

modeling is expressed in Equation (9), where it can be seen that for a generic timestamp, 𝑇0, its 209 

trajectory corrections (denoted generically as 𝛿𝜃𝑏(𝑇0)
𝑚 ) are a function of the timestamps and 210 

trajectory corrections of its 𝑛 neighboring trajectory reference points. The down–sampling time 211 
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interval, polynomial order, and number of neighboring trajectory reference points are chosen 212 

based on the nature of platform dynamics. 213 

𝛿𝜃𝑏(𝑇0)
𝑚 = 𝑓( 𝑇0, 𝑇𝑖, 𝑇𝑖+1, … , 𝑇𝑖+𝑛−1, 𝛿𝜃𝑏(𝑇𝑖)

𝑚  , 𝛿𝜃𝑏(𝑇𝑖+1)
𝑚 , … , 𝛿𝜃𝑏(𝑇𝑖+𝑛−1)

𝑚 ) (9) 

 
Figure 4. Down–sampled trajectory reference points (with down–sampling time interval Δ𝑇) 

used for trajectory enhancement: 𝑇𝑖 to 𝑇𝑖+𝑛−1 denote the 𝑛 neighboring trajectory reference 

points for a generic timestamp 𝑇0. 

Other than the above target functions, other constraints are also included in the UMSAT. To 214 

guarantee the smoothness/continuity of the refined trajectory, correction differences for 215 

successive trajectory reference points are minimized. For an image–based object point 𝑃 that 216 

belongs to an areal LiDAR feature, the normal distance between 𝑃 and the corresponding plane 217 

can be also minimized in the LSA. Similarly, for a linear–areal feature correspondence, the 218 

endpoints to plane distances can be minimized. These correspondences are useful to integrate 219 

various camera and LiDAR features. Finally, UMSAT supports the incorporation of prior 220 

information for the unknowns including system calibration parameters, trajectory information, 221 

and/or feature parameters. This is conducted through the incorporation of pseudo observations. 222 

3. Utilized Mobile Mapping Systems and Datasets Description 223 

3.1. Wheeled and UAV Mobile Mapping Systems  224 

This study involves two in–house developed wheeled MMS – Purdue wheel–based mobile 225 

mapping system–Ultra High Accuracy (PWMMS–UHA) and Purdue wheel–based mobile 226 

mapping system–High Accuracy (PWMMS–HA). The PWMMS–UHA, as displayed in Figure 227 

5a, is equipped with two single–beam LiDAR scanners: Riegl VUX 1HA and Z+F Profiler 228 

9012. These scanners deliver a 360° horizontal field of view (FOV). Each scanner can deliver 229 

upto 1,000,000 points per second. Two rear–facing FLIR Flea2 FireWire cameras are installed 230 

on the PWMMS–UHA. Both cameras have a maximum image resolution of 5.0 MP and are 231 

synchronized to capture images at a rate of 1 frame every 0.75 s. All sensors are directly 232 

georeferenced by a NovAtel ProPak6 and ISA–100C GNSS/INS unit. The PWMMS–HA, as 233 

shown in Figure 5b, includes four multi–beam LiDAR scanners: three Velodyne HDL–32Es 234 

and one Velodyne VLP–16 Hi–Res. The HDL–32E consists of 32 radially oriented laser 235 

rangefinders aligned vertically from −30.67° to +10.67°. The VLP–16 Hi–Res has 16 radially 236 

oriented laser rangefinders with a 20° vertical FOV. The point capture rates for HDL–32E and 237 

VLP–16 Hi–Res are 700,000 and 300,000 points per second, respectively. Three FLIR 238 

Grasshopper3 9.1MP GigE cameras are also mounted on the PWMMS–HA: two forward–239 

facing and one rear–facing. The cameras are synchronized to capture one 1 frame per second 240 

per camera. The PWMMS–HA sensors are directly georeferenced by an Applanix POS LV 220 241 
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GNSS/INS unit. In addition to wheeled MMS, an off–the–shelf UAV system, a DJI M300 242 

equipped with the Zenmuse L1 LiDAR sensor is used (Figure 5c). The Zenmuse L1 integrates 243 

a Livox LiDAR module, a camera, and an IMU on a 3–axis stabilized gimbal. The LiDAR 244 

horizontal and vertical FOVs are 70.4° and 4.5°, respectively. The point capture rate is 700,000 245 

points per second. The UAV camera has a 1–inch CMOS with a 24 mm focal length and a 246 

maximum image resolution of 20.7 MP. The IMU unit has a measurement rate of 200 Hz. After 247 

post–processing, a position accuracy of ±1 to ±1.5 cm and attitude accuracy of ±0.025° and 248 

±0.15° for pitch/roll and heading, respectively, can be achieved. 249 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Illustrations of (a) Purdue wheel–based MMS—ultra high accuracy system 

(PWMMS–UHA), (b) Purdue wheel–based MMS—high accuracy system (PWMMS–HA), 

and (c) DJI M300 UAV equipped with the Zenmuse L1 (adapted from DJI website). 
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3.2 Study Site and Datasets Description 250 

In this study, the image/LiDAR data were acquired 251 

along a 0.5 mile segment of the I–65 highway close to 252 

Lebanon, IN, United States, as shown in Figure 6. The 253 

site is rich with point, linear, and areal features, which 254 

could be identified in the imagery and LiDAR data. A 255 

total of three datasets are used.  256 

Table 1 provides a summary of the relevant information 257 

for the datasets acquired from the PWMMS–UHA, 258 

PWMMS–HA, and DJI systems. 259 

Table 1. Specifications of acquired datasets for the wheeled and UAV systems. 260 

Platform 
Data Acquisition 

Date 

Driving/flight 

Speed 

Number of Collected 

LiDAR Points  

(in millions) 

Number of 

Captured Images 

PWMMS–UHA 2022.07.10 ~50 mph ~23 52 

PWMMS–HA 2022.12.02 ~50 mph ~63 158 

DJI UAV* 2022.08.02 ~8.5 mph ~85 88 

* Above ground flying height is 70 meters. 261 

4. Experimental Results 262 

In this study, camera/LiDAR data collected by the three systems are integrated through the 263 

proposed UMSAT framework. LiDAR data acquired by the DJI system is used as a reference 264 

due to the high positional accuracy provided through uninterrupted GNSS–signal. For the 265 

captured UAV images, we have only access to approximate geotagging information. While 266 

camera IOP were derived through an SfM process, the EOP are estimated through UMSAT. 267 

For the wheeled MMS, rigorous system calibration has been conducted. Although onboard 268 

GNSS/INS units provide trajectory with reasonable accuracy, misalignments can be observed 269 

due to GNSS–signal interruptions for the wheeled MMS units. Therefore, system calibration 270 

parameters (IOP and mounting parameters for the camera and LiDAR units) of PWMMS–UHA 271 

and PWMMS–HA are fixed in the LSA while refining their trajectory through UMSAT. 272 

For the triangulation features, lane markings are modeled as linear features, as shown in Figure 273 

7. Specifically, skip–lines are modeled as individual linear features. Edge lines, on the other 274 

hand, are divided into short straight line segments. A geometry–based approach is adopted to 275 

extract lane markings from the UAV and wheeled LiDAR data (Cheng et al., 2020). Then, lane 276 

markings derived from PWMMS–UHA, PWMMS–HA, and DJI LiDAR are matched according 277 

to their spatial proximity. Corresponding image lines are established through back–projection 278 

of LiDAR linear features onto the imagery. Since lane markings are almost parallel, they only 279 

provide control in the vertical and across driving directions. Therefore, four poles (colored in 280 

red in Figure 7) are manually extracted from the LiDAR data to provide control along the 281 

Figure 6. Location of study site 

adopted in this research. 
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driving direction. These poles are modeled as linear features as well. For the UAV camera 282 

imagery, other than the manually established linear features, a SfM is conducted to derive image 283 

tie points with the corresponding object points depicted in Figure 7. Moreover, intermediate 284 

points along the lane markings and poles have been also established in the imagery. 285 

In this study, the endpoints of line segments (including lane markings and poles) from the DJI 286 

UAV LiDAR are used as control information. The PWMMS–UHA (with two LiDAR units and 287 

two cameras), PWMMS–HA (with four LiDAR units and three cameras), and UAV camera 288 

datasets are included by considering both point and linear features. For the two wheeled 289 

systems, the trajectory is modeled by 1HZ reference points with a 2nd order polynomial. For the 290 

UAV images, we only solve for position/orientation corrections at their locations (i.e., a zero–291 

order polynomial is used – i.e., a reference point is defined for each image). 292 

 

Figure 7. Established lane markings (randomly colored by the feature ID) and four poles 

(colored in red) from the DJI LiDAR data, as well as the image–based object points (colored 

in grey) derived from SfM processing of the DJI imagery. 

The performance of UMSAT is first evaluated through qualitative analysis. Specifically, 293 

profiles perpendicular to the driving direction are extracted from the DJI, PWMMS–UHA, and 294 

PWMMS–HA LiDAR data as well as the image–based point cloud from the DJI camera (Figure 295 

8). We can observe that the misalignment in the across driving and Z directions is minimized 296 

after the UMSAT process. To evaluate the alignment along the driving direction, one of the 297 

light poles is extracted from the profiles and also shown in Figure 8, where we can see good 298 

alignment along the driving direction (refer to the close–up views in Figure 8). 299 

Having examined the 3D alignment between the LiDAR and image–based point clouds, the 300 

accuracy of the camera geo–tagging for all systems is evaluated through backward projection, 301 

as shown in Figure 9. A point on one of the light poles was selected in the DJI LiDAR data and 302 
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back–projected onto the images from DJI, PWMMS–HA, and PWMMS–UHA systems. As 303 

shown in Figure 9b, the 2D misalignment is minimized following the UMAST optimization. 304 

 
Figure 8. Illustration of extracted profiles/features from the LiDAR data as well as image–

based point cloud before/after UMSAT optimization showing improved alignment in the 

across/along driving and vertical directions. 

 
(a) 

 
(b) 

Figure 9. Illustration of image back–projection accuracy (a) before and (b) after applying 

UMSAT. 
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The quantitative evaluation of UMSAT is analyzed through the Root Mean Square (RMS) 305 

values of residuals for the camera/LiDAR constraints, including (i) normal distance from 306 

LiDAR points to the respective object–space linear features, (ii) 𝛼 angle between the imaging 307 

ray for an intermediate point and the respective plane through the linear feature, and (iii) back–308 

projection error for image tie points. Table 2 lists the above metrics before and after the UMSAT 309 

optimization for the different systems. It can be seen from this table that the before optimization 310 

misalignment, in the range of 1.2 – 1.3 m for the LiDAR linear features, is reduced to roughly 311 

7 cm. As for the image linear features, the RMS of the 𝛼 angle is reduced to almost 0.2°. As for 312 

the image tie points, a 1.3 pixel back–projection error is achieved for the DJI camera data. 313 

Table 2. Quantitative evaluation of the pre/post–UMSAT optimization for the three datasets. 314 

 

RMS of normal 

distances for the LiDAR 

linear features (m) 

RMS of 𝛼 angles for the 

image linear features 

(degree) 

RMS of back–projection 

erros for the image tie 

points (pixel) 

Before After Before After Before After 

Overall 1.262 0.069 3.250 0.191 6.872 1.319 

PWMMS–UHA 1.307 0.065 3.716 0.269 N/A N/A 

PWMMS–HA 1.222 0.073 5.250 0.213 N/A N/A 

DJI Camera N/A N/A 0.915 0.140 6.872 1.319 

 315 

5. Conclusions and Recommendations for Future Work 316 

This study presented a unified multi–sensor advanced triangulation (UMSAT), which can 317 

handle point, linear, and areal features derived from imaging and ranging remote sensing 318 

systems aided by a GNSS/INS position and orientation unit. Camera/LiDAR data collected by 319 

two wheeled and one UAV MMS over a highway study site are used to evaluate the 320 

performance of the proposed strategy. Experimental results indicate that through UMSAT, 321 

camera and LiDAR data from these systems are well–aligned (i.e., indicating that multi–322 

temporal, multi–sensor, and multi–platform geospatial data are ready for subsequent integration 323 

activities). The current limitation of the proposed strategy is the time–consuming, manual 324 

measurements of image linear features. Therefore, automated feature extraction and matching 325 

procedures from camera and LiDAR data will be explored. Moreover, the feasibility of using 326 

UMSAT in GNSS–challenging, and potentially GNSS–denied, environments will be 327 

investigated.  328 
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