FIG/SGP/ICG/IAG/IGS Technical Seminar Reference Frames in Practice Seminar and IGS Practical Training

Introduction Geodetic reference frames and deformation models

Chris Pearson Trimble

Chris Crook Land Information New Zealand

Warsaw, Poland, 10-11 Sept. 2022

Semi-dynamic datums

Coordinates transformed to common reference epoch using deformation model cGNSS for active control

Transformation Parameters ITRF2008 --> NAD 83 $T_x = 0.99343 + 0.00079 \bullet (t - 1997) m$ **Translations:** $T_v = -1.90331 - 0.0006 \bullet (t - 1997) m$ in m $T_z = -0.52655 - 0.00134 \bullet (t - 1997) m$ Rotations: $R_x = [0.12467 + 0.01347 \bullet (t - 1997)] \bullet k$ $R_v = [-0.22355 - 0.01514 \bullet (t - 1997)] \bullet k$ in mas $R_{z} = [0.00027 - 0.05133 \bullet (t - 1997)] \bullet k$ Scale change: $S = -0.93496 - 0.10201 \bullet (t - 1997) \bullet 10^{-9}$ $k = 4.848 \bullet 10^{-9}$ Rotation rates NOAM DeMets EP

ITRF2014 --> ETRF2014

- $T_x = 0$ meters+0•(t 1989) **Translations:** $T_v = 0$ meters+0•(t - 1989) $T_{z} = 0$ meters+0•(t - 1989) Rotations: $R_x = [0 + 0.085 \bullet (t - 1989)] \bullet k$ in radians $R_v = [0 + 0.531 \bullet (t - 1989)] \bullet k$ $R_{z} = [0 - 0.770 \bullet (t - 1989)] \bullet k$ Scale change: S = 0
- Rotation rates –EURA EP from Altamimi 2017
- EUREF velocities generally minimized for tectonically stable parts of the Eurasian plate

Functional models

- Time functions are usually defined using two values.
 - $f_t = f_1(t_s)$ when t >= t_s usually 0 or -1 for rev patches
 - ft = f(t) when for ts <= t
- linear velocity $f_t = v(t t_0)$ Currently used for the secular velocity
- step $f_t = 0$ for $t < t_s$ Used for earthquake displacements • f_t =1 for t >= t_e
- linear ramp $f_t = 0$ for $t < t_s$ For temporary velocity changes

•
$$f_t = (f_0^{\bullet}(t_1 - t) + f_1^{\bullet}(t-t_0))/(t_1-t_0)$$
 for $t_s \le t \le t_e$

- Post-seismic deformation
- Exponential

•
$$f_t = 0$$
 for $t < t_s$
• $f_t = f_1 (1 - e^{\epsilon(t_0 - t)})$ for $t \ge ts$

• or Logarithmic

Element 1

Spatial function: grid

Velocity only deformation model

 $m_k(t,\theta,\lambda) = v_k(\theta,\lambda) \mathsf{t}$

Velocity and earthquakes

 $m_k(t,\theta,\lambda) = v_k(\theta,\lambda)t + E_{ki}(\theta,\lambda)H(t-t_i) + P_{ki}(\theta,\lambda)H(t-t_i)\left(1 - e^{\frac{t-t_i}{tc_i}}\right)$

- *m* is the displacement
- v is the velocity (ndm)
- *E* is the earthquake shift (patch)
- *P* post-seismic decay coefficient
- Tc is the time constant
- H is the step function

- step $f_t = 0$ for $t < t_s$
- $f_t = 1$ for $t > t_s$

Secular velocity field

- Velocity from four recent studies were aligned with the ITRF2014 velocities
- The combined velocity field was used to produce a grid file with a density of 20 points/degree

ITRF2014 Banerjee 2008 Bettinelli 2006 Ader 2012 Jade 2014

Residuals from alignment

Earthquake patches

- earthquake patches are
 - Normally based on geophysical models
 - finite in extent
 - Introduce a taper where the amplitude of the shifts is lineally reduced to 0 to prevent a discontinuity at the edge of patches
 - Two critical distances:
 - » Taper starts at a particular distance from the epicenter when the signal is reduced to a low value
 - \ast Taper ends when the amplitude is reduced to 0
 - » At greater distances the amplitude of the shifts are 0 everywhere.
 - high amplitude signal is concentrated near the epicenter
 - Nested grids with higher resolution epicentral region

Cross sections

shift vs longitude dd

Cross section along 27.75 ° Lat

Error propagation

• Deformation Equation

$$\begin{bmatrix} \phi(t) \\ \lambda(t) \\ h(t) \end{bmatrix} = \begin{bmatrix} \phi_0 + (H(t - t_i)E_{ci} + v_E * t) \\ \lambda_0 + (H(t - t_i)N_{ci} + v_N * t) \\ h_0 + H(t - t_i)h_{ci} + v_h * t \end{bmatrix}$$

• Variance

$$\begin{bmatrix} S^{2}_{\phi(t)} \\ S^{2}_{\lambda(t)} \\ S^{2}_{h(t)} \end{bmatrix} = \begin{bmatrix} S^{2}_{\phi_{0}} + \left(H(t-t_{i})S^{2}_{E_{ci}} & t+S^{2}_{v_{E}} * t\right) \\ S^{2}_{\lambda_{0}} + \left(H(t-t_{i})S^{2}_{N_{ci}} & t+S^{2}_{v_{N}} * t\right) \\ S^{2}_{h_{0}} + H(t-t_{i})S^{2}_{h_{ci}} & t+S^{2}_{v_{h}} * t \end{bmatrix}$$

- Velocity contribution to coordinate errors increase with square root of time
 - the shorter the time since the reference epoch the better
- Errors from earthquakes are not time dependent
 - Hard to quantify, largest where deformation spatially variable

Darfield earthquake

The Woodchester Wall

Leader Fault Kaikoura Earthquake 2016 Left lateral and reverse of ~1.5-2m Motion concentrated on fault plane that broke surface

• Errors from earthquakes are largest near fault trace

- Particularly if there is surface faulting
- Consider changing reference epoch after an earthquake

Conclusions

- Modern datums aligned to a realization of the ITRF
- Maintaining a low distortion datum requires a mechanism to correct for crustal motion
- Can be an Euler Pole for low distortion areas
- Or deformation model for plate boundaries
 - Velocity model
 - Earthquake displacements and post seismic
 - Also supports time dependent least square adjustments
- Errors associated with velocity models increase with Squair root of time errors. Errors associated with earthquake models are largest near surface traces
- common reference epoch reset after major earthquakes
 - Draft Abstract Specification for deformation models has been released for comment by the OGC

draft Abstract Specification for deformation models

- The project team has endorsed this draft specification
- Seek promotion to SWG

Errors

A simplified approach to propagate positional errors for these functions neglecting most correlations is: _____

•
$$e = \sqrt{f_{e1}^2 \cdot e_1^2 + f_{e2}^2 \cdot e_2^2 \dots + f_{en}^2 \cdot e_n^2}$$

• For each component the factor can be calculated using simple identities for error propagation:

• if
$$f(x) = c \cdot x$$
 then $e_{fx} = c \cdot e_x$

• if
$$f(x) = x + y$$
 then $e_{fx} = \sqrt{e_x^2 + e_y^2}$

•
$$f_{e_{1,t_1-t_2}} = \sqrt{abs(f_{e_1}(t_1)^2 - f_{e_1}(t_o)^2)}$$