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ABSTRACT 

 

Rising temperatures in polar regions due to climate change are causing significant changes in 

landscapes dominated by permafrost. The extent and severity of these changes have previously 

been hard to quantify due to the remote nature of the area of permafrost for the data collection 

process, but modern advances in satellite remote sensing technology have allowed a plethora 

of relevant data to be easily accessed and used for analysis. In this study, satellite imagery is 

used to detect changes in the landscape that indicate melting permafrost in Eastern Alaska. 

Three main metrics are the focus of the review: land surface temperature (LST), vegetation 

cover, and the annual maximum extent of water bodies. Indexes such as Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Modified Normalized 

Difference Water Index (MNDWI) are used to generate the results, culminating in a 

multivariate analysis of the change in permafrost in Eastern Alaska over the study period of 

2000 – 2015. Results show that the vegetation greening trend in Eastern Alaska considering the 

overall change trend of EVI values are indicators of permafrost thawing in these years. Besides, 

based on Sen's slope, surface temperatures have been increasing over time, thus confirming that 

rising surface temperature is the driving force of permafrost melting. 
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1. INTRODUCTION 

Permafrost is defined as ground that remains at or below 0℃for two or more consecutive years 

(Dobinski, 2011). In recent years, global warming in the polar regions is causing significant 

changes to areas consisting of permafrost. So, permafrost has begun to melt in polar regions 

worldwide. Permafrost contains large amounts of greenhouses gases that have accumulated in 

the soil due to the death and subsequent decomposition of living things. Methane (CH4) and 

carbon dioxide (CO2) are the two most common gases contained in permafrost, with billions of 

tons stored and millions of tons released annually due to melting (Shakhova et al., 2012; Natali 

et al., 2012).After release into the atmosphere, these greenhouse gases enhance the 

atmosphere’s ability to retain heat, further increasing atmospheric temperatures and 

encouraging further melting of permafrost, creating a dangerous feedback loop that can cause 

climate change to rapidly accelerate (Adiya, et al., 2021). Another potential concern is the 

mobilization of dissolved organic compounds and other materials such as soil nutrients within 

freshwater systems as they are released due to the melting of permafrost. For example, large 

amounts of ammonium could be released (Fouché, et al., 2020), causing pH imbalances 

downstream and potentially creating inhospitable environments for local flora and fauna, 

leading to an ecosystem collapse. Permafrost thawing is a geological change that will directly 

affect the future trend of the entire climate change. Hence, understanding land surface changes 

in permafrost regions is critical to climate change mitigation strategies related to permafrost 

degradation. The nature and extent of the changes of permafrost are complicated by ecological 

responses on strong gradients in environmental conditions and within the perturbation range. 

Emerging remote sensing technologies, based on an increasing number of satellite and airborne 

platform arrays, are covering an increasingly wide range of time as well as space and are highly 

capable of reliably monitoring changes in permafrost landscapes (Jorgenson, et al., 2016). 

There is currently data that supports that climate change and changing disturbance mechanisms 

are causing permafrost degradation. The change of lake area is one of the effects of permafrost 

degradation, affecting the distribution and availability of water resources in the future. One such 

example is that changes in lakes can affect the level of water in soils, causing surface flora such 

as trees to die once the ground reaches a point of oversaturation. Furthermore, draining water 

can cause flooding, excessive erosion (e.g., landslides, sinkholes), and other unwanted side 

effects further downstream (Jorgenson, et al., 2001). One of the objectives of this research is to 

investigate if the changes in vegetation cover over time observed in the study region were 

consistent with changes expected in regions experiencing permafrost degradation. A study 

performed based on land cover changes in Quebec, Canada, have been quantified to estimate 

changes in permafrost that produce discontinuous changes to the forest-tundra transition zone, 
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it also presented an overall increase in vegetation between 1986 and 2009, while high vegetation 

increased by 21% between 2004 and 2009 (Beck et al., 2015). It demonstrates the feasibility of 

using high-resolution satellite imagery to detect land surface changes that can be used as 

subarctic permafrost degradation indicators. Research shows that one of the major signals of 

permafrost thaw is related to the changes in vegetation cover, more specifically its expansion. 

Indeed, greening in permafrost regions is a response to warming temperatures that imply 

warming permafrost. The greening in association with thawing permafrost is likely due to the 

increasing thawing index, which provides more heat for the growth of plants, moreover, there 

is a positive correlation between the thawing index and the Normalized Difference Vegetation 

Index (NDVI), which suggests that warming permafrost may encourage vegetation growth 

(Peng et al., 2020). The thawing index is an indicator used in estimating the depth of the active 

layer in permafrost regions. Furthermore, research shows that increase in the depth of the active 

layer of permafrost is generally tied to wetter soil conditions that are associated with nutrient-

rich plant growth (Christensen et al., 2004). It is important to note that there are various factors 

at play in the dynamics of permafrost change that are beyond the scope of this research. One of 

these major factors is climatic conditions that need to be taken into consideration as it plays a 

major role in both vegetation change and permafrost thaw. Vegetation indexes of NDVI and 

Enhanced Vegetation Index (EVI) take advantage of the spectral signatures of vegetation. 

Vegetation absorbs radiation in the blue and red wavelengths and reflects in the green band 

with far greater reflectance in the near-infrared (NIR) band, reflectance in the NIR band is 

pivotal for qualitative and quantitative assessment of vegetation. Spectral signatures of 

vegetation area are impacted by various factors such as water content, plant type, leaf 

chlorophyll concentration, leaf area index (LAI) among others. The spongy mesophyll layer in 

the leaf surface has a high reflectivity in the NIR band and low reflectance in the visible bands 

(blue and red wavelengths). Furthermore, a study conducted in Arctic tundra landscapes reveals 

that there exists a high potential to use land surface temperature (LST) anomalies to detect land 

cover changes in these areas because of permafrost degradation or climate change (Muster et 

al., 2015).  

2. RELATED WORK 

Several research papers address the melting problem of permafrost through different analytical 

methods. Research conducted suggests that the response of northern tundra plant communities 

to warming is critical and permafrost ecosystems play a crucial role in global carbon storage, 

and climate-induced changes in permafrost will affect organisms and their direct carbon dioxide 

transfer (Natali et al., 2012). Bui et al. (2020) estimated accuracy and limitations of different 

hydrological models for the analysis of hydrological processes of permafrost in the Arctic 

region. In another research sensitivity and robustness of satellite data of MODIS to the LST 

changes in different land covers in the Canadian Arctic region have been analyzed, and their 

validation with in-situ radiometer measurements have been taken into account, and as a result, 

high anomalies and variations in spatial and temporal scales have been observed (Muster et al. 

2015). With the same token, Hachem et al. (2012) demonstrated the correlation between 

MODIS LST and ground surface temperature and near-surface air temperature in the permafrost 

zone, which showed a strong correlation in snow-covered time of the year, pinpointing on the 

fact that LST is a crucial indicator of land cover changes in the permafrost region. Beck et al. 
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demonstrated the utilization of other satellite data including Landsat and QuickBird, to discover 

the land cover changes, focusing on vegetation and water covers, as an indicator of permafrost 

degradation. Boike e al. (2016) performed research based on using MODIS and Landsat images 

to explore changes in water bodies, LAI, LST, and forest fires frequency and intensity, and the 

results have shown a continuous warming pattern. Carpino et al. (2018) also performed a change 

detection analysis of forest covers for the first time on a large scale in the permafrost area  and 

Du et al. (2016) illustrated the utilization of Sentinel-2 data for extraction of indices such as 

Normalized Difference Water Index (NDWI) and Modified NDWI (MNDWI), the research 

takes advantage of 4 pan-sharpening algorithms to use the best possible spatial resolution from 

Sentinel-2 data to acquire accurate information about water bodies coverage. However, Gao et 

al. (2020) stated the fact that due to limitations of optical remote sensing for inside permafrost 

analysis, dual-index algorithm (DIA) coupled with permafrost classification method is more 

beneficial. Peng et al. (2015) and Gandhi et al. (2015) performed change detection by NDVI 

differencing to explore changes of different land covers and greening trends. Instead of NDVI, 

Singh et al. (2015) utilized NDWI and MNDWI indexes to detect waterlogging from 

ResourceSat-2 AWiFS satellite data. Using satellite data and airborne geophysical surveys, 

Jepsen et al. (2013) determined the relationship between permafrost and water areas changes, 

focusing on the fact that shallow part of permafrost is more influential than deeper parts in the 

distribution of lakes in the interior Alaska. Jorgenson & Grosse (2016) discussed the possibility 

of fusion of different data sources such as InSAR, LiDAR and airborne geophysics to determine 

changes in landscape media such as thermokarst lakes and drained lake basins, as indicators of 

the permafrost degradation. 

Kääb (2008) performs a hazard analysis using SAR and LiDAR data as well as the digital 

elevation models (DEMs) in the cryosphere hazard zones resulting from massive permafrost 

movements and unstable slopes. With the same token, Kääb, et al. (2005) represented a 

comprehensive overview of remote sensing techniques coupled with GIS for risk and 

permafrost-related hazard assessment in the mountain area. Natali et al. (2011) experiment two 

kinds of winter and summer warming into the soil and permafrost and explore the productivity 

of tundra plants, the results of which were increased biomass in winter and prolonged growing 

season in both winter and summer. In the study of Nguyen et al. (2009), SPOT-5 data and the 

supervised maximum-likelihood classification (MLC) were used to determine riparian area 

extent and as a result the depth of permafrost zone, which had more accurate results than most 

permafrost maps in Canada. In the study of Nill et al. (2019), LST changes were analyzed using 

Landsat data accompanied by NDVI, NDWI, Tasseled Cap greenness (TCG), brightness 

(TCB), and wetness (TCW), and DEMs, and Theil-Sen (T-S) regression method has been taken 

into account to explore the relationship between indexes and LST. Novikova et al. (2018) 

utilized multi-temporal aerial and satellite imagery to find out the planimetric and volumetric 

retreat rates of permafrost. Nyland et al. (2018) proposed a semi-automated Random Forest 

classification technique using optical imagery available on Google Earth Engine, the result of 

which is increasing greening trend and decreasing water areas indicating permafrost 

degradation. Panuju et al. (2020) applied satellite multispectral data to analyze the change 

detection direction and magnitude, its probability and frequency in land cover. Park et al. (2016) 

utilized satellite microwave observations for the first time for permafrost extent analysis using 

freeze-thaw (FT) status. 
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Pastick et al. (2013) implemented a regression and extrapolation based on decision trees using 

electromagnetic resistivity data and Landsat TM and DEMs to demonstrate the permafrost 

mapping and monitoring. By a similar approach Sarp & Ozcelik (2017) used Support Vector 

Machine (SVM) beside indexes to extract water area from Landsat TM and ETM+ imagery. 

Permafrost degradation is also of critical importance for Greenhouse Gas Emissions. 

(Christensen, et al., 2004) demonstrate how changes in permafrost coverage can increase 

Greenhouse gas emissions. (Fouché, et al., 2020) examines 25 soil cores from 9 different sites 

in Canadian Arctic to understand dissolved organic carbon and nitrogen stocks mobilization 

inside the thawing permafrost into watersheds. There are several possibilities to explore the 

trend and pattern in LST and its relationship with permafrost degradation. Exercise of Mann-

Kendall and Sen's methods have been explored in several studies, for instance, Gocic et al. 

(2013) used them to determine the trend in several meteorological variables such as 

temperature, relative humidity, vapor pressure, and precipitation. Mustapha (2013) utilized the 

Mann-Kendall test and Sen’s Slope estimator for homogeneous trend direction detection and 

intensity based on eight different physicochemical and precipitation indicators in the river 

basins. Li et al. (2021) exercised ENVISAT ASAR data for deformation detection and Zhang 

et al. (2021) explored efficacy of WorldView-2 for analysis of active layer of permafrost.  

3. STUDY AREA AND METHOD 

3.1. Study Area  

The study area lays between Fort Yukon and Fairbank in Eastern Alaska, USA (Figure 1). This 

inland area is located in the continental subarctic region, which is covered with a large amount 

of continuous as well as discontinuous permafrost all year round. The typical climate for our 

study area has long cold winters and short warm summers, with the lowest temperature ranging 

from -30℃ in winter and to -15℃ in summer (The Alaska Climate Research Center, 2018). 

Studies have shown that permafrost degradation is severe in inland Alaska causing shifts in 

land cover types (Jorgenson et al., 2001). Since one of our study objectives is to detect how the 

land cover feature changes related to the permafrost degradation, a region that has a sufficient 

amount of vegetation cover, water bodies, as well as different landforms (for temperature 

comparing purposes) has been selected. 

 

Figure 1. Our Proposed Study Area in Eastern Alaska, USA 
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3.2. Enhanced Vegetation Index  

The enhanced vegetation index (EVI) is a remotely sensed index that is widely used to monitor 

the conditions of vegetation by estimating the chlorophyll content of leaves. This index was 

obtained from the MOD13Q1.006 dataset for the past 20 years (2000 - 2020) in Eastern Alaska. 

EVI is similar to NDVI in that it can quantify the greenness of vegetation. Moreover, EVI 

corrects for changes in solar incidence angle, atmospheric conditions, canopy background 

noise, and offers higher sensitivity in areas with dense vegetation, and provides a more accurate 

and consistent estimate of greenness (USGS, 2021). EVI is calculated by  

 

EVI=G×
(NIR-RED)

(NIR+C1×RED-C2×BLUE+L)
         (1) 

 

where G is the gain factor (2.5), L is the adjustment for canopy background, C1, C2 are the 

coefficients of the aerosol resistance, uses the blue band to correct for aerosol influences in the 

red band, NIR is the near-infrared surface reflectance, RED and BLUE represent the reflectance 

in the red and blue bands. The Blue band removes residual atmosphere contamination caused 

by smoke and sub-pixel thin cloud clouds. 

 

3.3. Change in Land Surface Temperature  

Land surface temperature (LST) data derived from MODIS satellites were used to design a 

methodology for time series analysis of LST. The MOD11A2.006 Terra LST and Emissivity 

8-day global 1 km is comprised of an 8-day composite of 1–2-day observation intervals and has 

a spatial resolution of 1 km. This data also covers our temporal range since it is available from 

March 2000 to the present. The Mann-Kendall statistical test has been widely used to 

investigate trends in hydro-meteorological time series (Gocic et al., 2013). Hence it is one of 

the popular non-parametric tests used to detect trends in time series data and it is possible to 

determine the presence of an increasing or decreasing trend as this test is less likely to be 

impacted by outliers. This is because it is not directly based on the values of the random 

variables but instead is based on the sign differences (Mustapha, 2013). In this study, the Mann-

Kendall trend test examines every pair of the pixel value to determine the trend of the data over 

the years 2000 – 2020, which can be calculated by  

S= ∑ ∑ Sign(Tj-Ti)
n
j=i+1

n-1
i=1                   (2) 

 

Sign(Tj-Ti)= {  

1 if Tj-Ti>0

0 if Tj-Ti=0

-1 if Tj-Ti<0

}        (3) 

 

where, a positive value of S indicates that there is an increasing trend; A negative value of S 

indicates that there is a decreasing trend in the time series. A zero-value   indicated that there is 

no trend. Furthermore, Sen’s Slope estimator is a non-parametric model used to determine the 
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slope of the time series trend in both EVI and LST. This obtains the slope value for every pair 

of pixels in which the pixel pairs are comprised of values computed at time i, and another at j, 

where j represents a later time and i represent an earlier time.     

 

Q
i
=

xj-xk

j-k
 for i=1, …, N,                      (4) 

 

where xj and xk represent the data values at times j and k where j > k, respectively. N is a sample 

of N pairs of land surface temperature data, and Qi is the value of the slope. These N slope 

values Qi are ranked to determine the median to obtain Sen’s slope as shown  

 

Q
med

= {

Q
(
N+1

2
)

if N is odd

Q
(
N
2

)
+Q

(
N+2

2
)

2
if N is even

             (5) 

 

The magnitude of Qmed indicates the slope of the trend while the sign indicates whether the trend 

is increasing, decreasing or if it has no change. The Sen’s slope estimator was applied to 

variables of land surface temperature measured in degrees Celsius and maximum enhanced 

vegetation index for the summer months.  

 

3.4. Change in Maximum Annual Extent of Water Bodies 

Changes in the maximum annual extent of water bodies in Eastern Alaska can be linked to 

permafrost degradation. This research focuses on all bodies of water on the surface, including 

temporary melt ponds as well as permanent lakes, within the study area that has exhibited 

change over time. MNDWI analysis was chosen as our tool of choice due to its superior ability 

to delineate water features mixed with vegetation in comparison to NDWI (Singh et al., 2015; 

Xu, 2006). The changes observed may include both shrinkage and expansion of the maximum 

annual extent of water bodies. MNDWI composites will be generated for 5 years periods from 

2000 to 2020, and then image differencing will be performed on these composites to show 

changes between these years. For Landsat 7 data, MNDWI is defined using the following bands  

MNDWI=
Band 2-Band 5

Band 2+Band 5
                           (6) 

 

where Band 2 and Band 5 respectively represent the green band (0.52 – 0.60 µm) and the SWIR 

band (1.55 – 1.75 µm) of Landsat 7 ETM+. The output is a number in between -1 and 1, with 

negative values showing evidence for the non-water surfaces and positive values showing 

evidence for water surfaces, with evidence becoming stronger as the value moves away from 

0.  
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3.5. Normalized Difference Vegetation Index 

Permafrost degradation in Eastern Alaska can be linked to changes in the vegetation cover. 

Except for EVI, NDVI analysis also was employed to look at changes in vegetation within the 

study area over the given study period. Both increases and decreases in vegetation are expected 

in different areas. NDVI composites will be generated for 5 years periods from 2000 to 2020, 

and then image differencing will be performed on these composites to show changes between 

these years. For Landsat 7 ETM+ data, NDVI is defined as  

 

NDVI=
Band 4-Band 5

Band 4+Band 5
                                (7) 

 

where Band 4 and Band 5 respectively represent the NIR band (0.77 – 0.90 µm) and the SWIR 

band (1.55 – 1.75 µm) of Landsat 7 ETM+. The output is a number in between -1 and 1, with 

negative values showing evidence for a lack of vegetation present on surfaces and positive 

values showing evidence for vegetation presence on surfaces, with evidence becoming stronger 

as the value moves away from 0. 

3.6. Maximum-Likelihood Supervised Classification  

The supervised classification analysis gives us a comprehensive overview of how the different 

land cover features are distributed within our study area. By classifying the features from each 

5-year-time interval image, we can compare the changes over time and interpret how different 

land feature change pattern looks like. On the other hand, by comparing the classification result 

to the EVI, NDVI, MNDWI, and LST analysis result, we can effectively evaluate the analysis 

results and detect any potential errors that could be generated during the processing on Google 

Earth Engine. We planned to perform this supervised classification to the data downloaded from 

USGS. As shown in Figure 2, we classified all the land features within the study area into 4 

classes: water (blue), vegetation (light green), fallow field (yellow), as well as dense forest 

(dark green). After we collected sufficient sample data, we performed the maximum likelihood 

classification by running the tool. Lastly, we exported the output data once we ensure that our 

classification’s accuracy level shows in the classification report turned to around 90%, which 

is a highly accurate classification. 

4. RESULTS AND DISCUSSION 

4.1. Changes in Vegetation Cover 

 

Figure 2. Examples of sample training data 
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The Mann-Kendall trend test applied to maximum EVI for summer produced the signs of 

maximum EVI pixels and a histogram showing their subsequent frequency as shown in Figure 

3. This histogram shows the vast majority of the pixels in the study area depict positive trends 

over the years 2000 to 2020. The signs of the slopes were further used to infer vegetation 

conditions in the study area over time. The result from Sen’s slope of maximum summer EVI 

further quantifies the changes in vegetation over the 20 years during the study period and it 

depicted a significant proportion of the study region exhibiting positive slope over the years 

2000 to 2020. Sen’s slope uses the median of the slopes from pairs of EVI data in the time series 

to detect changes. In this research both increase and decrease in Sen’s slope indicated 

subsequent increase and decrease in summer EVI trends over the study period. This translates 

into a greening and browning trend in vegetation cover within the study region. However, the 

large proportion of this change involved greening over the years. Although decreasing trend of 

maximum summer EVI was far less in proportion than its increase, there was still a significant 

browning trend in certain areas of the study region particularly pronounced between 2005 - 

2010. Map of the study area showing the slope values over time (in years) is presented in the 

following (Figure 4) and quantities such as areas impacted by increasing and decreasing EVI 

trends in km2 are reported in Table 1.   

Table 1. The total area under greening and browning measured in km2, as well as the associated 

fractions of greening and browning areas within the study area 

 

 

Figure 3. Histogram of regression slope values showing positive and negative slope frequency of 

pixels of maximum summer EVI between 2000 - 2020 

4.2. Changes in Maximum Annual Extent of Water Bodies 

 
Figure 4. Sen’s slope of maximum summer EVI over time depicting areas with greening and 

browning trends between 2000 – 2020, and 5-year intervals. 
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While there were always increasing and decreasing extents in different areas for consecutive 5-

year periods, there was no obvious pattern. However, performing the image differencing 

between the first and last 5-year periods magnifies the pattern and makes the difference more 

noticeable. As shown in Figure 5, the net change in extent is positive. This means that the 

number of pixels representing an increase in water extent outnumbered the number of pixels 

representing a decrease. This is indicative of more permafrost melting in the later years of the 

study period as melting permafrost leads to large temporary bodies of water that show up when 

looking at a maximum annual extent that would be otherwise undetected if only permanent 

bodies of water were studied. The total net increase in maximum water extent is around 1.08% 

of the total area, implying that there is a not-insignificant degree of detectable permafrost 

melting that occurred over the study period as measured using this method. Thus, the most 

logical conclusion is that this result is evidence that supports the hypothesis that there is an 

increase in permafrost melting in our study area as measured by changes in the extent of water 

bodies, fulfilling the first research objective of understanding and quantifying the change in the 

maximum annual extent of water bodies in Eastern Alaska over time. 

 

Figure 5. Changes in the maximum extent of water bodies between 2000 – 2020 

4.3. Changes in LST 

In this research, change detection of land surface temperature was performed through the 

estimation of Sen’s slope. The areas showing a rise in land surface temperature over 20 years 

are major drivers of permafrost degradation in the study region. Research shows that surface 

temperature is the major climatic factor that governs the spatial distribution, existence, as well 

as thermal regime of permafrost (Hachem et al., 2012). Therefore, an increase and decrease in 

LST are critical in stimulating permafrost dynamics in the study region. However, it is 

important to note that other environmental factors play a key role in surface energy dynamics. 
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Surface albedo is impacted by various factors such as clouds, aerosols, ice among others. 

However, this research focuses on LST changes only about permafrost degradation. Areas 

showing temperature rise over the study period are major signals of thawing permafrost trends. 

Research shows that LST can be used to detect land cover changes in Arctic tundra landscapes 

as a result of permafrost degradation as well as climate change (Muster et al., 2015). Therefore, 

it would be scientifically reasonable to predict that the areas experiencing an increase in LST 

in the study region over the 20 years temporal range are likely to experience permafrost 

degradation. Average LST data of summer months (June and July) was graphed for the study 

period as shown in Figure 6.  Although the trend depicted in this graph does not show an overall 

increase or decrease over the years, there are certainly increasing and decreasing trends in 

certain areas within the study area over the years. These changes were determined by the result 

of the Mann-Kendall Trend test and its sign and Sen’s slope estimator as shown in the maps in 

Figure 7. The maps shown in Figure 7 depict the areas that exhibited positive values of Sen’s 

slope and those that exhibited negative values. 

 

Figure 6. Trends of summer average LST between 2000-2020 

 

Figure 7. Maps depicting Sen’s slope of summer land surface temperature show the sign and 

magnitude of the slopes (red: an increase in slope values, blue: a decrease). 

4.4. Supervised Classification  

Changes during the years 2000 to 2020 can also be easily detected by MLC in Figure 8. The 

land cover features within our study area have been classified into 4 classes (water, vegetation, 

dense vegetation as well as fallow field), blue refers to a waterbody, light green refers to 

vegetation, dark green refers to dense vegetation and yellow refers to the fallow field. The 

vegetation/water expansion (deduction) is indicated as the green/ blue area increase or 
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decreases. Overall, from 2000 to 2020, the detected vegetation expansion is more than the 

vegetation deduction. Similarly, the expanded extent of the water bodies is more than the 

reduced extent of the water bodies. 

 

Figure 8. Supervised classification of land cover features in Eastern Alaska between 2000 – 2020 

5. CONCLUSIONS 

This paper focuses on use of satellite data to comprehensively analyze the changes of 

permafrost landscape from different aspects by extrapolation of changes in permafrost by 

analysis of vegetation, surface temperatures, and lake changes in Eastern Alaska. Landsat and 

MODIS data were used in this research to analyze and evaluate the study area. In addition, this 

research utilized NDVI, EVI, LST, and NDWI/MNDWI to analyze permafrost changes in 

Eastern Alaska from 2000 to 2020 on a 5-year basis. The results show that the vegetation 

greening trend in Eastern Alaska between 2000 to 2020 is the main indicator of permafrost 

thawing and the change of vegetation coverage in the EVI, NDVI, and MLC analysis provides 

the conclusion that the vegetation coverage in Eastern Alaska experiences an increasing trend 

between 2000 - 2020. Moreover, rising LST are bound to accelerate the degradation of 

permafrost. LST trends from 2000 to 2020, plotted using Sen's slope, show that LST have been 

increasing over time, thus confirming that rising LST is the driving force of permafrost melting.  

In the future, we will explore the impact of permafrost melting and the countermeasures. Since 

permafrost contains a lot of greenhouse gases, of which CO2 and CH4 are the two most common, 

thawing permafrost means further warming of the atmosphere and further melting of the 

permafrost, creating a vicious cycle (Natali et al., 2012). Besides, the chain reaction of 

permafrost thawing on the ecological environment will become the main direction of the 

experimental project. Furthermore, the exercise of machine learning techniques such as 

Random Forest and Artificial Neural Networks (ANNs) may increase the accuracy of land 

cover detection and help to establish a stronger relationship between land cover changes and 

permafrost degradation. The current study can analyze features on the surface to find out what 

is happening in the underground world, as changes in the underground are reflected on the 

surface. However, future study will need to bring in more indicators and more 3D modeling 

techniques to take a deeper look at permafrost. Additional geophysical analysis of the 

Detection of Permafrost Degradation in Eastern Alaska Using Modis and Landsat Data (11672)

Kristie Hu (Canada), Yiping Chen (China, PR) and Sarah Fatholahi (Canada)

FIG Congress 2022

Volunteering for the future - Geospatial excellence for a better living

Warsaw, Poland, 11–15 September 2022



 

 

permafrost using Ground Penetrating Radar (GPR) and electrical resistivity tomography 

alongside with geospatial data can provide more accurate data from underground permafrost 

features and thawing status (Kim et al., 2021; Li et al., 2021).  
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