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SUMMARY  

 

Automatically extracting high-quality building polygons from Aerial images is crucial for 

supporting various land use and land cover mapping applications as the conventional object 

extraction process requires hand-crafted feature and human interventions which often has 

limited generalization capability and is time consuming. In this paper, we introduce an 

improved end-to-end deep-learning-based building extraction method based on PolygonCNN. 

First, after comparing the building segmentation performances of several famous segmentation 

networks, we replace the PSPNet of the original PolygonCNN with the Swin Transformer-

based Mask R-CNN which has shown a significantly improved building segmentation 

capability. Next, we integrate the Mask-R-CNN-based PolygonCNN with the Feature Pyramid 

Network (FPN) which exploits the multi-scale, pyramidal hierarchy feature maps of Swin 

Transformer. The Integration of FPN has shown to significantly improve both the segmentation 

performance of Mask-RCNN and the ragularization ability of the modified PointNet. Lastly, 

we further modify the original modified PointNet (BregNet) into a wider and deeper version to 

utilize the multi-scale feature maps of the FPN, thus to achieve better regularization effects. 

Our modified PolygonCNN has achieved state-of-the-art results when comapred with other 

end-to-end deep-learning-based building extraction methods.  
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1. INTRODUCTION 

 

The aerial photography technologies in the recent decade have enabled massive amount of data 

to be acquired every day and opened possibilities of many new land use and land cover (LULC) 

mapping applications. These applications often require digitization and interpretation of 

objects within the raw image data so that analysis can be further done with geographic 

information systems.  

Building, as one of the most frequently appearing object in urban scenes, its extraction from 

aerial images has played an important role in supporting LULC applications such as urban 

planning, change detection, and disaster management. Traditionally, this building extraction 

process requires human image interpreters which is extremely labour intensive and time 

consuming. Thus, automated extraction methods have been developed. In the early years, these 

methods often consist of manually extracting features (e.g., spectral, spatial, textural) followed 

by traditional machine learning classification methods. However, manual feature extraction 

usually requires experienced experts which may not always be feasible; moreover, since the 

extracted features are often designed to model spefic building types, the generalization 

capabilities of these methods are highly limited. As a result, many valuable information 

contained in this enormous amount of new data are not available. 

 

In the recent years, due to the fast-paced development of computation capability and the 

availability of vast training data, deep learning techniques have shed light on this problem. 

Techniques such as convolutional neural networks (CNN) and fully convolutional networks 

(FCN) have shown dominancy over conventional methods in terms of the level of automation, 

the building segmentation accuracy, and the generalization capabilities. However, the process 

of converting the predicted building segmentations, which often have irregular shapes that 

differ significantly from real-world building footprints, into regularized (i.e. straight edges and 

right-angled corners) building polygons continued to rely on handcrafted features and high 

human interventions. Despite a few works have been done on developing end-to-end deep-

learning-based methods to extract regularized building boundaries, these methods often have 

significantly lower accuracy compared to the semi-automated methods. 

 

Thus, to facilitate the development of the fully automated methods, this paper provides an 

improved end-to-end deep-learning-based method to extract building footprint polygons from 

aerial images. Based on the work of PolygonCNN (Chen et al., 2020), we introduce several 

improvements. First, we replace the PSPNet in the original PolygonCNN with the Swin 

Transformer-based Mask R-CNN which has shown to have significantly improved building 

segmentation capability. Next, we integrate PolygonCNN with the Feature Pyramid Network 

(FPN) which exploits the multi-scale, pyramidal hierarchy feature maps of Swin Transformer, 
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and significantly improves both the segmentation performance of Mask-RCNN and the 

ragularization ability of the modified PointNet. Lastly, we further modify the original modified 

PointNet into a wider and deeper version to utilize the multi-scale feature maps of the FPN, 

thus to achieve better regularization effects.  

 

2. RELATED WORKS 

 

In general, the existing methods of building extraction from aerial images can be categorized 

into two-stage methods and end-to-end methods. The two-stage methods often consist of a 

building segmentation step and a boundary regularization step. The end-to-end methods aim to 

take aerial images as input and directly output the building vectors. Therefore, this section will 

review the related works in the following three sub-sections: building segmentation, building 

boundary regularization, and end-to-end building polygon prediction. 

 

2.1 Building segmentation 

 

The studies on building segmentation have transitioned significantly from the early days’ 

conventional methods into the nowadays’ popular deep learning-based methods. The 

conventional methods usually involve manually extracting features based on the spatial (i.e., 

key points, corner points, edges), textual, and/or spectral characteristics of the image, then 

segmenting the building footprints by applying methods such as template matching (Sirmacek 

and Unsalan, 2009), graph cut (Manno-Kovacs and Ok, 2015), random forest classifier 

(Pelizari et al., 2018) or support vector machine classifier (Turker and Koc-San, 2015) to the 

extracted features. Despite that many significant achievements have been made, the feature 

extraction step of these methods is often designed for specific building types which has highly 

limited generalization capability. In addition, the hand-crafted features rely heavily on human 

intervention which is time consuming and may not always be practical. 

 

In the recent years, deep-learning-based building segmentation methods have become widely 

popular mainly due to the breakthrough of convolutional neural networks (CNN) on the 

ImageNet classification contest in 2012 (Krizhevsky et al., 2012). Deep-learning-based 

methods overcome the explicit feature design problem of the conventional methods by 

allowing adaptive feature learning from labeled training data. The early building segmentation 

CNNs achieve pixel-level segmentations by splitting a high resolution image into small patches 

(Alshehhi et al., 2017; Guo et al., 2017). Despite of the promising results, these methods are 

limited to overly redundant computations due to the heavy overlaps between patches. Thus, to 

over come the problem, fully convolutional networks (FCN) have been proposed to achieve 

pixels-to-pixels predictions (Long et al., 2015; Maggiori et al., 2017). In addition, He et al. 

(2017) have proposed Mask R-CNN for instance segmentation which combines semantic 

segmentation with object detection to predict the pixel masks for each individual building 

instance. 
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2.2 Building boundary regularization 

 

Despite of the great performances of FCN networks, there often tends to exist slightly mis-

predicted pixels along the predicted building boundaries, resulting in irregular shapes of the 

directly traced building polygons. Therefore, many studies have focused on regularizing the 

building segmentations into accurate, simple and regular polygons. Typically, building 

regularization require additional data sources such as airborne lidar scanning or public GIS 

data as assistances for precised regularizations (Boehm, 2019; Li et al., 2019). When only 

image data is available, usually hand-crafted features or pre-specified constraints such as 90-

degree corners and principle orientations are applied to regularize and simplify the building 

boundaries (Ling et al., 2012; Zhang et al., 2018). However, these low-level features has highly 

limited generalization capability on diversified building shapes. In addition, although they 

produce well-regularized building polygons, the regularized polygons often have significantly 

decreased accuracies. 

 

Due to the significant drawbacks of the conventional methods, seeking deep-learning-based 

building regularization methods has become a new trend. Girard and Tarabalka (2018)  

developed CNN-based methods to produce vectorial boundary labels of an image directly; 

Marcos et al. (2018) developed a CNN to predict building polygons close to the ground truths 

by learning parameters of an active countour model. The work was further improved by deep 

active ray network (DARNet) (Cheng et al., 2019). Although these methods have susscessfully 

improved the generalization capability and level of automation compared to the conventional 

building regularization methods, the regularized building vectors often have lacked simplicity 

and regularity.  

 

2.3 End-to-end building polygon prediction 

 

The end-to-end building extraction methods aim to take the aerial images as input, and directly 

output the regularized building polygons. Cheng et al. (2019) proposed an end-to-end deep 

neural network named deep active ray network (DARNet) for building polygon extraction. 

They use a backbone CNN to predict energy maps which are utilized to construct an energy 

function, and the building polygons are derived by minimizing the energy function. Despite 

the end-to-end structure, the network fails to take into consideration the simplicity and 

regularity of building polygons. Castrejon et al. (2017) developed an deep neural network 

named PolygonRNN to sequentially predict the object contour points. The network is consisted 

of a CNN feature extractor, and a recurrent neural network (RNN) which decodes one polygon 

vertex at a time. Despite the end-to-end structure, the network is limited by its high memory 

requirement. Motivated by PolygonRNN, Li et al. (2019) developed PolyMapper which 

focuses on delineating the road and building vector boundaries from a given image. Manual 

bounding box labels are no longer required due to the integration of the Feature Pyramid 

Network (FPN) detection module on top of PolygonRNN. However, PolyMapper lacks ability 

in predicting objects with complexed shapes; moreover, its convolutional Long Short-Term 

Memory module is computationally expensive. To overcome the expensive memory issue of 

these RNN-based networks, Chen et al. (2020) proposed an end-to-end network based on a 
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segmentation CNN and a boundary regularization CNN. The sementic segmentation network 

PSPNet (Zhao et al., 2017) is used to generate the initial building contour, while a modified 

PointNet predicts the coordinate offsets of the polygon vertices to generate the regularized 

buildings.  

 

3. METHODS 

 

Following the work of PolygonCNN (Chen et al., 2020), we introduced several enhancements. 

First, after evaluating the performances of several famous segmentation networks on the 

SpaceNet2 Building Detection Dataset, we replaced the PSPNet (Zhao et al., 2017) of 

PolygonCNN with the significantly improved Mask R-CNN (He et al., 2017) which was 

mounted with the state-of-the-art Swin Transformer (Liu et al., 2021) backbone. Next, we 

integrated PolygonCNN with the Feature Pyramid Network (FPN) which exploits the multi-

scale, pyramidal hierarchy feature maps of Swin Transformer, and significantly improves the 

segmentation performance of Mask-RCNN and the regularization ability of the modified 

PointNet. Lastly, we further modified the original modified PointNet into a wider and deeper 

version to utilize the multi-scale feature maps of the FPN to achieve better regularization 

effects. 

 

3.1 Building segmentation network 

 

To determine the segmentation network that can most precisely segment building footprints 

from aerial images, we have selected several famous segmentation networks from different 

application domains, and trained and compared their performances on the SpaceNet2 Building 

Detection Dataset. These selected networks are: U-Net (Ronneberger et al., 2015), PSPNet 

(Zhao et al., 2017), DeepLabV3+ (Chen et al., 2018), UPerNet (Xiao et al., 2018), HRNet 

(Wang et al., 2020), and Mask R-CNN (He et al., 2017). Since PSPNet, DeepLabV3+, 

UperNet, and Mask R-CNN take custom backbones, ResNet50 (He et al., 2016) is used for fare 

comparison. In addition, due to the impressive performance of Mask R-CNN, the Mask R-

CNN models with different backbone networks were also compared. The selected backbone 

networks were: ResNet50 and ResNet101 (He et al., 2016) , DenseNet121 and DesNet161 

(Huang et al., 2017), HRNet (Wang et al., 2020), and Swin Transformer (Liu et al., 2021). The 

best performing model was used to replace the PSPNet in the original PolygonCNN. 
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3.2 Integrating FPN into PolygonCNN 

 

As shown in Figure 1, based on the results from 3.1, we replaced the PSPNet in the original 

PolygonCNN with the Swin Transformer-based Mask R-CNN, and integrated the new 

PolygonCNN with the Feature Pyramid Network (FPN) (Lin et al., 2017). The FPN enhances 

the performance of PolygonCNN in the following two ways. 

 

First, the FPN greatly enhances the region proposal network (RPN) used by Mask R-CNN by  

exploiting the multi-scale, pyramidal hierarchy feature maps of Swin Transformer. The RPN 

in the original Mask R-CNN uses a single-scale feature map to create Region of Interests 

(RoIs); with the integration of FPN, the RPN is applied to feature maps at mutiple levels to 

generate multi-scale RoIs. Based on the size of the RoI, the feature map in the most proper 

scale is used to extract the feature patches. This procedure greatly enhances the segmentation 

performance of Mask R-CNN. 

Figure 1. Integration of the Feature Pyramid Network with PolygonCNN. 
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Furthermore, the original PolygonCNN uses a single-scale feature map for the feature pooling 

process, while with the integration of FPN, we utilize all four levels of feature maps in the FPN 

for the feature pooling. For example, a detailed feature pooling process is illustrated in Figure 

2. Assuming there are N predicted vertices (a N x 2 tensor), and four levels of feature maps in 

the FPN (with dimensions of 768, 384, 192, and 96). The new feature pooling process extracts 

every predicted polygon vertex’s corresponding feature vector in each level of the feature 

maps. Then, the predicted vertex vectors (N x 2) are concatenated with their corresponding 

feature vectors at each level (with sizes of N x 768, N x 384, N x 192, and N x 96), resulting 

in four tensors of sizes N x 770, N x 386, N x 194, and N x 98. The four tensors are fed 

concurrently into our improved PointNet (see section 3.3) for the improved buiding polygon 

optimization. 

 

3.3 Modified PointNet 

 

We improved the original modified PointNet of PolygonCNN to enable the utilization of multi-

scale feature maps of FPN. For naming convenience, we named the original modified PointNet 

of PolygonCNN as BRegNet which stands for Building Regularization Network. The BregNet, 

as described in Chen et al., 2020) takes a single input which is a concatenation of the predicted 

polygon vertices with their corresponding feature vectors extracted from a single-scaled feature 

Figure 2. Detailed structure of the improved feature pooling process. 
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map. However, our improved BRegNet takes four inputs consisting of concatenations of 

predicted polygon vertices with their corresponding feature vectors extracted from the four 

levels of the FPN feature maps.  

 

As shown in Figure 3, to enable multi-scale inputs, we first widened the original network by 

adding three more duplicated paths of feature transform and global pooling layers (as shown 

in the blue-dotted box). The outputs (n x 1088)  of the four duplicated paths consist of local 

and global information of the multi-scale inputs. These ouputs are concatenated into one tensor 

of size n x 4352. Next, to reduce the large dimension size of the feature aggregation, we 

deepened the network by adding two more feature transform layers with output sizes of n x 

2048 and n x 1024. This way, the dimension of the feature aggregation is reduced gradually 

with less information loss. 

 

4. Experimental settings 

 

4.1 Dataset 

 

We evaluate both the segmentation networks and the building extraction networks on the 

Round 2 dataset of the SpaceNet Building Detection Challenge. The dataset provides satellite 

images of four urban cities including Las Vegas, Paris, Shanghai, and Khartoum, contains over 

Figure 3. The improved BRegNet which enables multi-scale feature vector inputs 
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302,701 building footprints. All images were pan-sharpened and have uniformed properties: 

the spatial resolution is 0.3m by 0.3m per pixel, channel is RGB, and size is 650×650. To train 

the networks with a reasonable sized dataset, we randomly sampled 4000 images among the 

whole dataset. The sampled images was split into 3500 training images and 500 validation 

images.  

 

4.2 Network settings 

 

The eleven segmentation networks (i.e. U-Net, PSPNet, DeepLabV3+, UperNet, HRNet, and 

six Mask R-CNN models with different backbone networks) as well as the five building 

extraction networks (i.e. Polygon-RNN, DARNet, PolyMapper, PolygonCNN, proposed) share 

the following settings  

 

- The learning rate scheduler (ReduceLROnplateau) was set with a starting learning rate 

of 0.1, reduce factor of 0.2, and patience of 10. 

- the SGD optimization strategy was used with a weight decay of 0.05 and momentum 

of 0.9.  

- The batch size for the segmentation networks were set to 4, and that for the extraction 

networks were set to 1.  

- All the generated building polygons are processed by the Doglus-Peuker (DP) 

algorithm with 𝜀 of 1 pixel for fair comparisons of the building extraction networks. 

 

In addition, the anchor box size of Mask R-CNN was reduced to{8, 16, 32, 64, 128} instead of 

the default values considering the general sizes of the building footprints. Other non-specified 

parameters of all models were left with the default values as that were discribed in the papers. 

Furthermore, all models were implemented and tested in Pytorch (Steiner et al., 2019) on a 64-

bit Ubuntu system equipped with an NVIDIA TITAN X GPU.   

 

4.3 Evaluation metrics 

 

To evaluate the performances of the building segmentation networks, the mean Average 

Precision (AP) and mean Average Recall (AR) were calculated based on the intersection over 

union (IoU) (Jaccard, 1912) metric. Specifically, AP and AR were averaged over ten IoU 

values with thresholds from .50 to 0.95 with steps of 0.05. In addtition, the performances of 

the building extraction networks were evaluated using the metrics of F1-score which is a 

harmonic average of the polygon-based precision and recall, and was provided by the SpaceNet 

Building Detection Challenge.  
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5. Results and Discussion 

 

5.1 Building segmentation results and comparison 

 

To determine the segmentation network that can most precisely segment building footprints 

from aerial images, we first trained and compared the six selected segmentation networks on 

the SpaceNet2 Building Detection Dataset.As shown in Table 1, Mask R-CNN significantly 

outperformed all other segmentation networks by a large margin with an AP of 0.473 and AR 

of 0.502; HRNet, PSPNet and DeepLabV3 had shown similar performances with APs ranged 

between 0.418 to 0.427 and ARs ranged between 0.439 to 0.455; UPerNet had a slightly worse 

performance with an AP of 0.409 and AR of 0.431; U-Net had the lowest 0.391 AP and 0.404 

AR.  

 

Table 1. Comparison of the evaluation results of the selected segmentation 

networks. 
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Due to the outstanding performance of Mask R-CNN, we futher evaluated several popular 

backbone networks on Mask R-CNN. Their evaluation results are shown in Table 2. Compared 

to ResNet50, the ResNet101 model had shown significantly improved AP and AR of 0.506 and 

0.555, respectively, due to its larger depth and a sacrifice to the more expensive computations. 

In addition, the DenseNet161 had similar results compared to ResNet101. Surprisingly, the 

HRNet model had outperformed the ResNet and DenseNet models by a large margin, 

indicating that the rich high resolution features and multi-scale fusion of HRNet is effective in 

extracting features of building objects from high resolution aerial images. Furthermore, the 

Swin Transformer model reached the highest AP and AR of 0.564 and 0.614 with its novel 

non-overlapped window-based self-attention and shifted-window operation. Based on the 

comparison results, the Swin Transformer-based Mask R-CNN was used as the segmentation 

network in the PolygonCNN model. 

 

Table 2. Evaluation results of Mask R-CNN with different backbones. 
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5.2 Building extraction results and comparison 

 

In Table 3, we compare the polygon-based F1-score (calculated using on the polygon-based 

AP and AR as shown in Table 3) between the original PolygonCNN, the PolygonCNNs with 

gradually added modules, and our final upgraded PolygonCNN. With the proposed 

modifications made on PolygonCNN, we achieved absolute improvements of 0.109 F1-score 

compared to the original PolygonCNN. By gradually adding on modules to the original 

PolygonCNN, the changes of the F1-score are as the following. 

 

- Replacing the PSPNet in the original PolygonCNN with the Swin Transformer-based 

Mask R-CNN, the F1-score was improved significantly from 0.421 to 0.474.  

- Incorporating the FPN module into the Mask R-CNN network further boosts the F1-

score to 0.499. Note that the original feature pooling process was applied to the last 

layer of feature map in the top-down pathway of the FPN. 

- Applying the improved feature pooling process on all four levels of feature maps in the 

top-down pathway of the FPN (as shown in Figure 1) further increases the F1-score to 

0.514. Note that the pooled feature representations of the four scales were concatenated 

along with the predicted polygon vertices (e.g., in Figure 2, n feature vectors are 

extracted from the four feature maps resulting in four feature representations of sizes n 

x 768, n x 384, n x 192, n x 96. They are concatenated along with the predicted n x 2 

polygon vertices, resulting in a n x 1442 tensor). The resulted tensor was sent into the 

original BRegNet which takes a single input. 

- With the modifications made to the BRegNet as described in section 3.3, the F1-score 

was increased to 0.530.  

 

In addition, we evaluated other state-of-the-art end-to-end deep-learning-based methods such 

as the Polygon-RNN, DARNet, and PolyMapper on the SpaceNet 2 Building Detection 

Table 3. Comparison of the polygon-based F1-score, AP, and AR between the original 

PolygonCNN, the PolygonCNNs with gradually added modules, and the final upgraded 

PolygonCNN. 
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Dataset, and compared their results with our improved PolygonCNN as shown in Table 4. The 

results show that our improved PolygonCNN significantly outperform other state-of-the-art 

methods with a F1-score of 0.530. Polygon-RNN has the worst performance in terms of 

building extraction with a F1-score of 0.375; PolyMapper has the second lowest F1-score of 

0.402; PolygonCNN is placed at third with a F1-score of 0.421; DARNet has the second highest 

F1-score of 0.432.  

 

 

To better understand the causes of this ranking, a comparison of the building polygons 

extracted by these networks is shown in Figure 4.  

- Both Polygon-RNN and PolyMapper tend to make accurate prediction on the building 

parts with simple structures. However, they fail to predict buildings with more 

complexed shapes. This may be caused by the insufficient capability of their 

segmentation modules. 

- DARNet is capable of capturing the main structure of various types of buildings; 

however, the predicted polygons show lacks of regularization and simplification (i.e. 

fails to capture sharp corners and always contain redundant vertices). 

- The extracted building polygons of the original PolygonCNN are generally acceptable 

despite that some complexed building parts are mis-predicted. This is mainly caused by 

the lack of segmentation capability of the PSPNet considering the large performance 

difference between PSPNet and Mask R-CNN (as shown in Table 1) in segmenting 

building footprints. 

- Our improved PolygonCNN, benefited from its Swin Transformer-based Mask R-

CNN, the multiscale feature maps of the FPN, and the enhanced BRegNet, is capable 

of generating well regularized and simplified polygons for various types of buildings. 

Table 4. Comparison of the evaluation results between 

Polygon-RNN, DARNet, PolyMapper, PolygonCNN, 

and our improved PolygonCNN on the SpaceNet2 

Building Detection Dataset. 
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Figure 4. Examples of building vectors generated by Polygon-RNN, PolyMapper, DARNet, 

PolygonCNN, and our improved PolygonCNN. 
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6. Conclusion 

 

In this work, we have provided an improved end-to-end deep-learning-based method to extract 

building footprint polygons from aerial images. Following the work of PolygonCNN (Chen et 

al., 2020), we introduced several improvements. First, by evaluating the performances of 

several famous segmentation networks on the SpaceNet2 Building Detection Dataset, we 

replaced the PSPNet in the original PolygonCNN with the Swin Transformer-based Mask R-

CNN which had shown to have significantly improved building segmentation capability. Next, 

we integrated PolygonCNN with the Feature Pyramid Network (FPN) which exploits the multi-

scale, pyramidal hierarchy feature maps of Swin Transformer, and significantly improves both 

the segmentation performance of Mask-RCNN and the ragularization ability of the modified 

PointNet. Lastly, we further modified the original modified PointNet (BregNet) into a wider 

and deeper version to utilize the multi-scale feature maps of the FPN, thus to achieve better 

regularization effects. Our modified PolygonCNN had achieved state-of-the-art results when 

comapred with other end-to-end deep-learning-based building extraction methods.  

 

Since our modifications to PolyCNN mainly focus on improving the extraction accuray instead 

of the extraction/training speed, the improved BRegNet had shown significantly higher 

requirements in the computation power. Moreover, despite the great extraction capability of 

the current model on most commonly-seen building types, significant mis-predictions can still 

be found on certain biuldings with curved edges and very complicated shapes. Thus, our future 

work will focus on: (1) developing lighter weighted regularization networks; (2) developing 

methods that can precisely extract building polygons with curved edges and very complexed 

shapes. 
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