

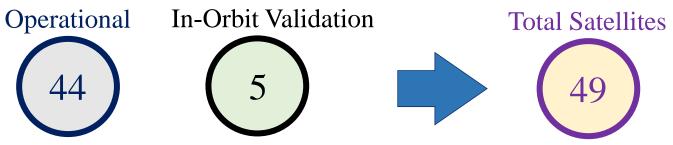
WORKING WEEK 2021 20-25 JUNE

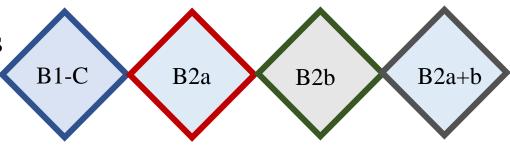
Presenter: Robert S.B. Galatiya SUYA
Paper ID-10986

The Contribution of BeiDou-3 Binary Offset Carrier Signals to Single Point Positioning

Robert S.B. Galatiya Suya, Yung-Tsang Chen, Chiew-Foong Kwong, Penghe Zhang, Craig Matthew Hancock

20-25 June, 14:00 Hrs





As of December 2020

BDS quad new frequencies

BDS legacy freq. signals

Multipath

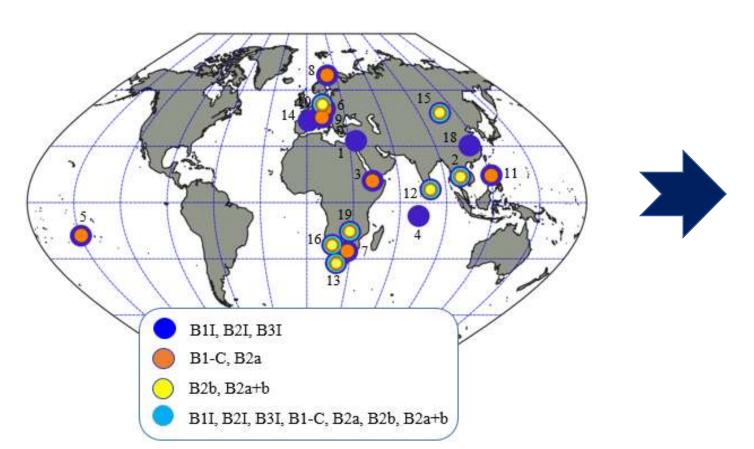
- 2
 - Signal-to-noise ratio (SNR)
 - 3

Visible number of satellites (NSAT)

4

Dilution of precision (DOP)

Single point positioning (SPP)



Experimental Description

- 30 days datasets: DOY 153 -182, 2020
- Number of stations: 19 (Figure 1)

Figure 1: Geographical Distribution of the selected stations (https://www.igs.org/network/#station-map-list)

Table 1: Geospatial locations

SN	ID	Latitude	Longitude
1	bshm	32° 46' 44.4"	35° 01' 12.0"
2	cusv	13° 44' 09.3"	100° 32' 02.1"
3	dgar	-08° 43' 49.1"	72° 22' 12.9"
4	djig	11° 31' 34.6"	42° 50' 49.4"
5	faa1	-18° 26' 40.9"	-150° 23' 08.5"
6	gop6	49° 54' 49.2"	14° 47' 08.2"
7	harb	-26° 06' 46.9"	27° 42' 26.1"
8	kiru	67° 51' 26.5"	20° 58' 06.4"
9	pado	45° 24' 40.1"	11° 53' 45.8"
10	pots	52° 22' 45.5"	13° 03' 57.9"
11	ptgg	14° 32' 07.5"	121° 02' 28.6"
12	sgoc	06° 53' 31.5"	79° 52' 27.1"
13	sutm	-33° 37' 06.8"	20° 48′ 39.3″
14	tlse	43° 33' 38.5"	01° 28′ 51.2″
15	ulab	47° 51' 54.2"	107° 03' 08.4"
16	wind	-23° 25' 30.3"	17° 05′ 22.0″
17	wtzz	49° 08' 39.2"	12° 52' 44.0"
18	wuhn	30° 31′ 54.0″	114° 21' 26.1"
19	zamb	-16° 34' 28.1"	28° 18' 39.6"

Results and Discussions

C7D has the least code multipath

Improvement in DOP: GDOP, PDOP & HDOP(~ 52%) VDOP(~ 49%)

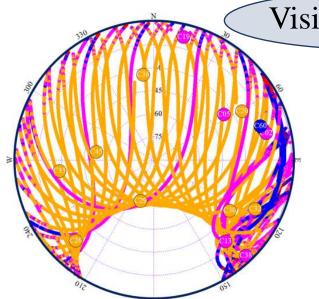


Figure 2: NSAT at SUTM on DOY 154

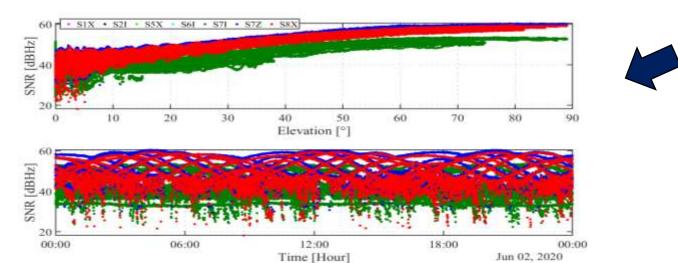
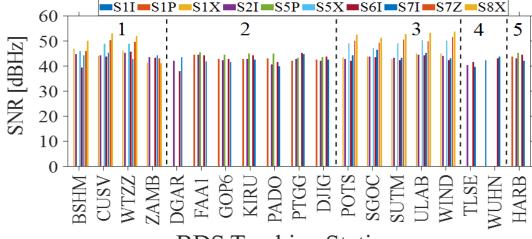



Figure 4: SNR with respect to elevation/time at SUTM station on DOY 154 (2020)

BDS Tracking Stations
Figure 3: SNR for the selected stations

- 1 JAVAD TRE_3 DELTA
- 2 SEPT POLARX5
- 3 JAVAD TRE_3
- 4 TRIMBLE NETR9
- 5 SEPT POLARX5TR

SNR: ~ 92% > 40 dBHz

SPP Performance

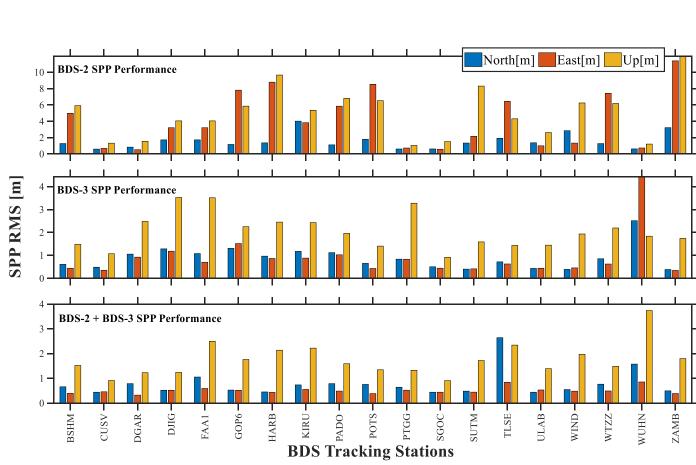
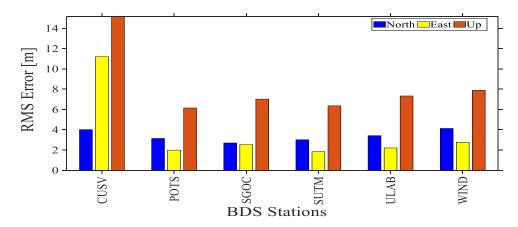



Figure 5: SPP performance

SPP performance: N(53%), E(73%), Up(61%)

Figure 6: SPP performance for B1C and B2a+b

- 83% of the stations have SPP performance less than 5 m in both N and E dimensions
- 83% of the stations have an SPP performance of at less than 10 m in height
- *** Reduced Number of satellites with BOC signal tracking capability

Table 2: SPP performance statistics (BOC)

Station	North [m]	East [m]	Up [m]
Min	2.69	1.84	6.14
Max	4.12	11.19	15.15
Average	3.4	3.75	8.31

Conclusions

• For the Selected stations + days, C7D has the least code multipath

■ Visible NSAT BDS-2 (~8) BDS-3 (~7) B1

BDS-2 + BDS-3 (~ 7)

Improvement in DOP

GDOP, PDOP & HDOP

VDOP ~ 49%

■ SNR: about 92% is above 40 dBHz

- With respect to BDS-2, improvement in SPP performance: **N(53%), E(73%) & Up(61%)
- Averaged SPP for stations with BOC signal tracking capability:>3m
- ■Overall SPP accuracy will likely improve upon the inclusion of the in-orbit validation BDS satellites in the operational orbital constellation

Backup slides

Results and Discussions

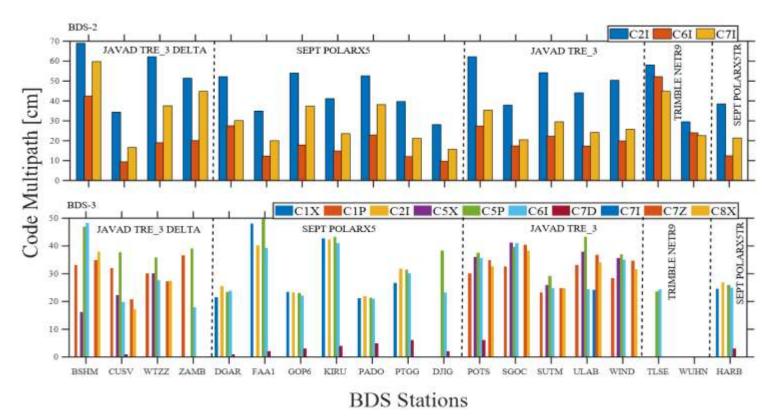
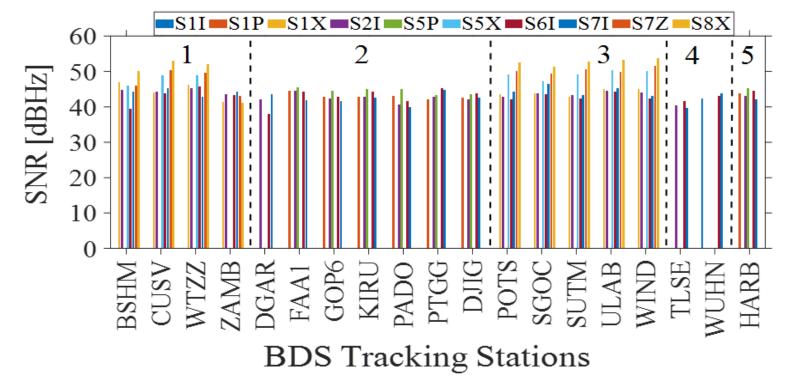


Figure 7: Code multipath comparison

Multipath Analysis


Table 3: BDS-2 multipath statistics

	C2I	C6I	C7I
Minimum [cm]	28.10	9.40	15.70
Maximum [cm]	69.00	52.20	59.80
Average [cm]	47.08	21.10	29.96

Table 4: BDS-3 multipath statistics

	C1X	C1P	C2I	C5X	C5P	C6I	C7D	C7Z	C8X
Min [cm]	21.20	23.20	21.90	16.10	21.40	17.90	1.00	20.70	17.20
Max [cm]	48.10	36.50	42.40	41.20	49.80	48.20	6.00	40.50	38.40
Average [cm]	29.71	31.04	30.29	30.66	34.81	29.10	3.30	31.79	30.51

Figure 8: SNR for the selected stations

- 1 JAVAD TRE_3 DELTA
- 2) SEPT POLARX5
- 3 JAVAD TRE_3
- 4 TRIMBLE NETR9
- SEPT POLARX5TR

92.16% of the estimated SNR are above 42 dBHz

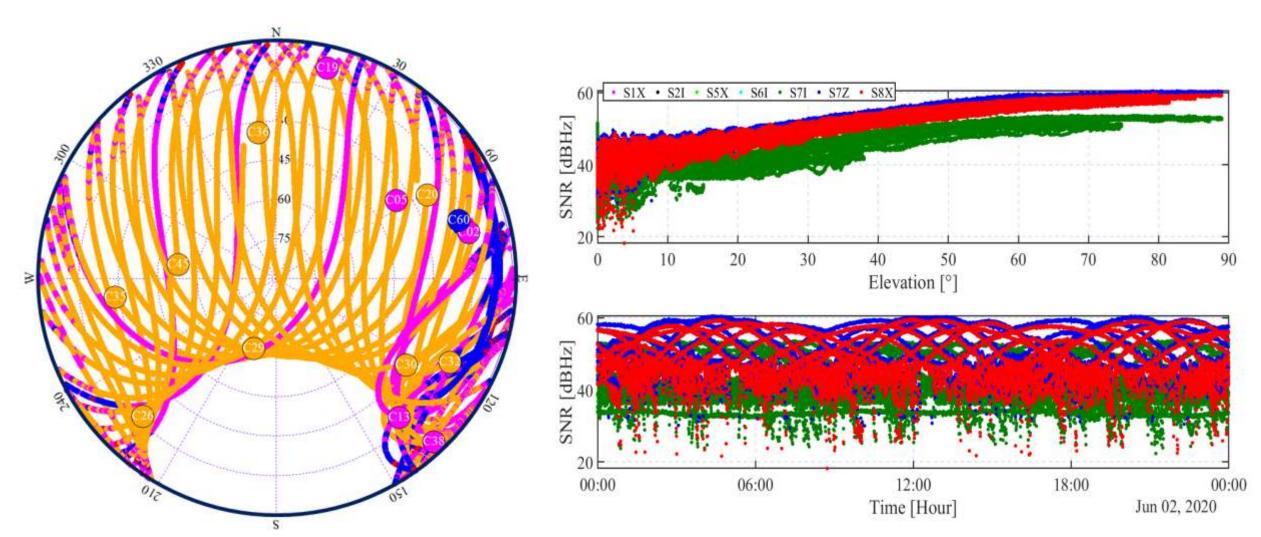


Figure 9: NSAT at SUTM on DOY 154

Figure 10: SNR with respect to elevation/time at SUTM station on DOY 154 (2020)

Visible Number of Satellites

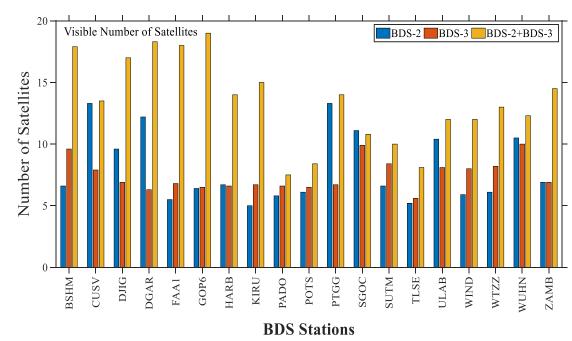
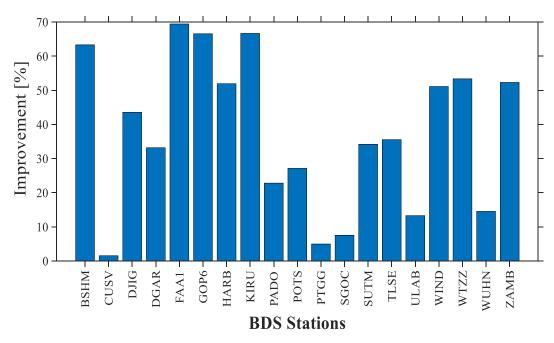



Figure 11a: Visible NSAT

Table 5: NSAT statistics

	BDS-2	BDS-3	BDS-2+BDS-3	Improvement [%]
Min	5	6	7	2
Max	13	10	19	69
Average	8	7	14	38

Figure 11b: Improvement in the visible NSAT

Dilution of Precision (DOP)

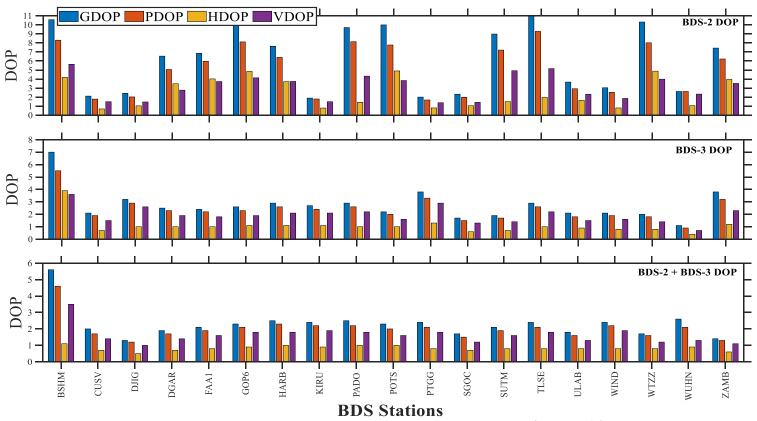
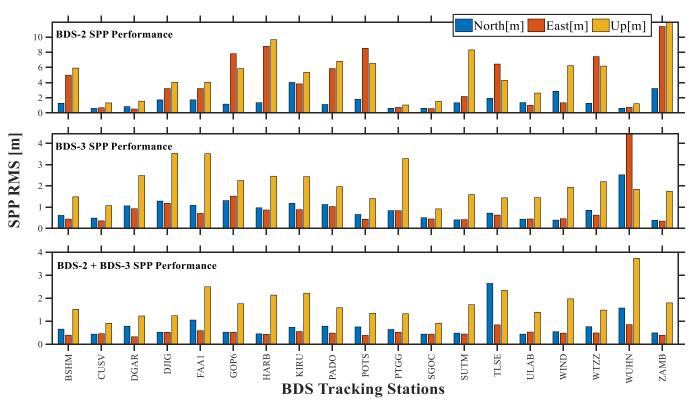



Figure 12: Averaged DOP

Table 6: Averaged DOP statistics

		BDS	-2		BDS-3					BDS-2 + BDS-3				Improvement [%]			
	GDOP	PDOP	HDOP	VDOP	GDOP	PDOP	HDOP	VDOP	(GDOP	PDOP	HDOP	VDOP	GDOP	PDOP	HDOP	VDOP
Min	1.90	1.69	0.70	1.39	1.05	0.91	0.41	0.71		1.32	1.18	0.53	0.96	3.01	5.41	0.35	5.47
Max	11.00	9.27	4.90	5.64	6.96	5.48	3.92	3.55		5.58	4.56	1.06	3.55	83.47	80.63	85.94	69.41
Average	6.29	5.15	2.47	3.14	2.72	2.39	1.08	1.93		2.29	2.01	0.81	1.63	56.09	54.56	52.49	49.08

SPP Performance

Figure 13: SPP performance

Table 7: SPP performance statistics

Station -	В	DS-2 [m	n]	B	DS-3 [m	<u> </u>	 BDS-	2 + BDS-	3 [m]	Improvement [%]		
Station –	N	Е	U	N	Е	U	N	Е	U	N	Е	U
Min [m]	0.59	0.52	1.04	0.38	0.34	0.92	0.44	0.32	0.91	5.76	22.40	20.77
Max [m]	4.01	11.39	11.96	2.52	4.44	3.53	2.64	0.85	3.74	84.65	96.60	84.98
Average [m]	1.54	4.16	4.97	0.88	0.89	2.05	0.78	0.51	1.74	52.71	72.57	60.99