kadaştışını menen 2021. Kadaştışını menen anını Mesenten atmerine in minimus menen Presenten atmerine in minimus menen Presenten atmerine in minimus menen

> Rebuilding the Cadastral Map of The Netherlands Geodetic aspects

Frank van den HEUVEL, Gerbrand VESTJENS, Gerbrand VERKUIJL, Mark van den BROEK

FIG e-Working Week 2021

•

 \bullet

Some 'Dutch' numbers

Netherlands

Land mass: 41543 km² 17.5 million inhabitants (~ 420 inh. / km²)

Cadastral

Currently 1218 cadastral municipalities Divided in 7889 cadastral sections 8 million historic and current parcels 5.1 million fieldsketches

Computational

Order of 500 million observations Order of 250 million unknowns

Cadastral municipalities

Measurement types

Parallellism without distance Tape distance Perpendicularity Distance point-line Chainage offset GPS Collinearity Parallellism with distance Double distances Total Station

Challenges / Ambitions

Quality

Current cadastral map has a 'visual' quality of around 20 cm to 1 meter (1 σ) Expected cadastral map has computational quality of around 5 cm (1 σ)

Methodology

Least squares adjustment with (strict) statistical testing ('Delft School') 'Current' dGPS-measurements as control points in adjustments Adjustment steps during vectorisation and coupling

Per individual fieldsketch

Quasi free network adjustment^(*)

Per fieldsketch with neighbours

Constrained adjustment, using any known (GPS-) points as control ($\sigma_{x,v} = 2 \text{ cm}$)^(*)

Per cluster of approximately 250 fieldsketches

Constrained adjustment, only using known (GPS-) points as constraints

(*) Due to lack of sufficient redundancy, all (remaining) points are used as control with 20 meter a-priori standard deviation.

Large scale adjustment (LSA)

Proprietary development of fast adjustment using LM (Levenberg-Marquardt) solver

Proprietary development of fast inversion routines to calculate statistics (w-test, F-test, MDB, Redundancy numbers)

Written in Python, using Numpy and PyPardiso

Number of variables	Equivalent number of field sketches	Number of iterations	Time (s)
10 ³	5	11	0.16
104	50	15	0.89
10 ⁵	500	13	7.47
10 ⁶	5000	17	164.6
2 *10 ⁶	10000	19	453.6

Table 1: Timing of large-scale adjustment experiments.

Number of variables	Equivalent number of field sketches	Time (s)
4 * 10 ³	20	2.5
104	50	11
2 * 10 ⁴	100	30
4 * 10 ⁴	200	200

Table 2: Timings of full inverse calculation with PyPardiso.

Production process: adjustment & mapping

kadaster

10:58

More information on automating the vectorization step in FIG-paper: Broek, M. van den, Heuvel, F. van den, Verkuijl, G., Vestjens, G. "Rebuilding the cadastral map of The Netherlands, the geodetic concept"

Renewal of the cadastral map

Updating for each Large scale adjustment (LSA)

Compute point field and full covariance matrix

Update the cadastral map using geometric relations

Focus on relations between lines of LSA and cadastral map

Initialize with current cadastral map and artificial covariance matrix

Main goal: interpolation of points not linked to LSA

First results

Field sketch

Vectorization

Reconstructed boundaries

Connecting the point fields

Standard ellipses - before and after

Conclusions

Statistical testing of observations in all steps of the renewal process

Rigorous and scalable solution for cadastral map renewal and updating

Field sketch

Cadastral map

Updated cadastral map

kadaster

Rebuilding the Cadastral Map of The Netherlands Geodetic aspects

Frank van den HEUVEL, Gerbrand VESTJENS, Gerbrand VERKUIJL, Mark van den BROEK

FIG e-Working Week 2021

•

 \bullet