Assessment of different GNSS and IMU observation weights on photogrammetry aerial triangulation
Assessment of different GNSS and IMU observation weights on photogrammetry aerial triangulation

Arash JOYBARI, Mohammad BAGHERBANDI, Faramarz NILFOUROUSHAN
Introduction

Geospatial and Temporal data

http://www.imo.org/en/MediaCentre/PressBriefings/Pages/41-SDGS.aspx
Study Purpose

Applications:
- City Planning
- 3D modeling
- Disaster Management
- Deforestation
- ...

Quality check
Systematic errors optimization
Aerial triangulation

Data:
- Image data
- Ground Control Points
- Tie Points
- Check Points
- GNSS data
- INS data

Applications:
- City Planning
- 3D modeling
- Disaster Management
- Deforestation
- ...

High Quality Data

Output

DSM
DTM
Orthophoto
Mesh
Introduction [photogrammetry]

Photo = Light
Gram = Recording
Metry = Measurement
Introduction [LiDAR]

LiDAR stands for Light Detection and Ranging, commonly known as Laser Radar.

Aerial LiDAR System Components:

- Aircraft
- Scanning laser emitter-receiver unit
- Differentially-corrected GPS
- Inertial measurement unit (IMU)
- Computer

![LiDAR System Components Diagram](Source: internet)
Introduction [GNSS]

Global Navigation Satellite System

- Europe’s Galileo
- The USA’s NAVSTAR Global Positioning System (GPS)
- Russia’s Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
- China’s BeiDou Navigation Satellite System

GNSS/GPS applications include:

- Tracking/Mapping Devices
- Industrial Machinery
- Sea vessels
- Air Navigation
- Automobiles
Combination of GNSS and INS will give continuous position, time and velocity information, even in difficult environments where there is limited GPS satellites in view.
Introduction [Aerial Triangulation Vs. Direct Georeferencing]

Calibrate some parameters:

- lever arm,
- boresight misalignment,
- camera interior orientation,
- some other sensor noise and errors

GNSS shift and drift errors

https://doi.org/10.1117/1.JRS.10.014002
Introduction [Aerial Triangulation Vs. Direct Georeferencing]

Aerial Triangulation

- More accurate
- Faster

Direct Georeferencing

Position and orientation estimated by AT

Position and orientation from GNSS/IMU

Direct measurements on Ground without GCP

Measurements on Ground using results of AT

Source: internet
Study Background

Schmitz and Wübbena 2001
- The rigorous GPS modeling in the combined GPS/block adjustment
- Compared it with shift and drift approach
- Better accuracy-IMU beside GPS-supported AT

Mostafa and Hutton 2001
- POS/Av 510
- DG in conjunction with standard stereo model + a single photo
- Accuracy of DG meets the theoretical admissible accuracy for map production

Kruck 2002
- Applanix V.s. IGI in two different photo scale considering GNSS shift and drift effect
- Applanix had lower RMS (better accuracy)

Cramer 2006
- Imaging sensor + Continuous GPS/INS data
- Kalman filter (strip-wise integration approach)
- Accuracy: Horizontal = 10-20 cm, Vertical = 20-30 cm

Blázquez and Colomina 2012
- Introduced functional models using relative aerial control instead of absolute position
- Removed completely GNSS shift and drift error besides IMU-to-camera boresight misalignment angle

Kersten and Haering 1998; Heipke 1999
- Tie points extraction in lake, forest and mountain area is hard.
- GNSS/IMU data collection during project

Mostafa et al. 2001
- Independent photogrammetrically derived reference trajectory V.s. US National Geodetic Survey (NGS) Continuously Operating Reference Station (CORS)
Purpose and Data

Purpose:
- To finding best GNSS/IMU weight in aerial triangulation process

Study area and data:
- Gothenburg, Sweden – July, 08, 2019
- Lantmäteriet, the Swedish mapping, cadastral and land registration authority
- 0.25 m ground sample distance (GSD)
- The test field size is approximately 75 × 90 km²
- 25 strips, 1198 images
- 60% forward overlap 25% lateral overlap

- Applanix POS AV 510 – GNSS/IMU Equipment
- Ultracam Eagle digital camera with an 80 mm lens
Method

GNSS shift and drift errors

- GNSS antenna-eccentricity
- GNSS reference stations are far away from the project area
- Incorrect On The Fly (OTF) integer ambiguities in GNSS kinematic observations

\[
\begin{align*}
 f_x &= (x'_0 + d_{x_0}) - (f + d_f) \times \left[\frac{r_{11}(X - X_0) + r_{21}(Y - Y_0) + r_{31}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)} \right] + \delta_{\text{shift}} + (t - t_0)\delta_{\text{drift}}, \\
 f_y &= (y'_0 + d_{y_0}) - (f + d_f) \times \left[\frac{r_{12}(X - X_0) + r_{22}(Y - Y_0) + r_{32}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)} \right] + \delta_{\text{shift}} + (t - t_0)\delta_{\text{drift}},
\end{align*}
\]
Result

<table>
<thead>
<tr>
<th>Observation uncertainty</th>
<th>IMU (°)</th>
<th>Numbers of image rejection</th>
<th>RMS Residual check Points (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS (meter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u(E), u(N), u(H)</td>
<td></td>
<td>E</td>
<td>N</td>
</tr>
<tr>
<td>0.2, 0.2, 0.2</td>
<td>0.007, 0.007, 0.009</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.006, 0.006, 0.008</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.008, 0.008, 0.002</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.003, 0.003, 0.007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.001, 0.001, 0.001</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>0.001, 0.001, 0.009</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.08, 0.08, 0.08</td>
<td>0.003, 0.003, 0.007</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0.04, 0.04, 0.04</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0.12, 0.12, 0.12</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0.2, 0.2, 0.2</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.36, 0.36, 0.36</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.36, 0.36, 0.36</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.08, 0.08, 0.08</td>
<td>0.007, 0.007, 0.009</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

The number of image rejection and checkpoints RMS of some best case, worst case and Lantmäteriet default (*) for observations uncertainties.

![T-test evaluation of Images with higher errors](image-url)
Result

![Graph showing RMS Residuals of Check points and Total Image Rejection](image_url)

RMS Residuals of Check points (m)

Total Image Rejection (m)

GNSS (cm) and IMU (degree/1000) uncertainties
Thank you for your attention