Role of Digital Maps in Road Transport Security

Li Zhang1, Jinyue Wang1, Martin Wachsmuth1, Marko Gasparac2, Roland Trauter2 and Volker Schwieger1

1Institute of Engineering Geodesy (IIGS), University of Stuttgart
2Daimler AG, Germany

TS07E: Multi-Sensor Positioning

FIG Working Week 2019
22-26 April 2019, Hanoi, Vietnam
Outline

- Motivation and Introduction
- Map Data Availability Analysis
- Map Data Quality Analysis
- Map Preview in Demonstration
- Outlook
Motivation

Autonomous Emergency Manoeuvring and Movement Monitoring for Road Transport Security ➔ TransSec

• Funded: GSA (European GNSS Agency) within the H2020-GALILEO-GSA
• Duration: February 2018 to February 2021 (3 years)
• Partners:
 o Daimler AG (DAI), Germany
 o TeleConsult Austria GmbH (TCA), Austria
 o Vicomtech (VICOM), Spain
 o Waterford Institute of Technology (WIT), Ireland
 o Institute of Engineering Geodesy, University of Stuttgart (USTUTT), Germany
Introduction
TransSec Project

WP2: Precise Vehicle Positioning
WP5: Vehicle Movement Monitoring
WP6: V-2-X Communication
WP4: Environment Object Detection
WP3: Road and Environment Map
WP7: Autonomous Emergency Manoeuvering
In addition:
WP1: Project Management
WP8: Integration and Pilot Testing
WP9: Dissemination
Introduction
Overview of WP2-Precise Vehicle Positioning

PPP Approach (TCA) Multisensor Integration (USTUTT)

Source: TransSec Deliverable D2.1
Requirements for Positioning Quality

Image source: https://www.vboxautomotive.co.uk/images/products/IMU04-with-xyz.jpg
Introduction
Overview of WP3 - Road and Environment Map

WP2: Precise Vehicle Positioning

Map-Aiding Approach

Local Dynamic Map (LDM)
Enhanced Static Map Data
Standard Static Map Data
Additional static features
Detected Dynamic Environment Objects

WP4: Environment Object Detection

Electronic Horizon Provider
eHorizon provides most likely route of ego-vehicle in near future

WP5: Vehicle Movement Monitoring

Role of Digital Maps in Road Transport Security
Zhang et al.
FIG Working Week 2019
14.05.2019
6
Map Data Availability Analysis

- NDS (Navigation Data Standard) Map

- NDS is worldwide map standard for automotive grade use. It is a standardized **binary** database format and enables the exchange of navigation data and flexible map update.

- Map Data Availability Analysis based on Use Cases. E.g. shopping street are as line feature and market places are as area feature available etc.

- Availability of **standard attributes** and **truck-related attributes** was investigated. E.g. attributes like direction of travel, speed limit, road access restriction and limitation in weight and/or dimensions for trucks are available.
Map Data Quality Analysis

Reference Trajectories: measurement from geodetic GNSS receiver
- Overall length of ca. 100 km, tested trajectories include **35 non-highway roads**, 43 highway entrance/exit ramps and part of one highway nearby Stuttgart.
- Absolute accuracies: about **1.51 m**, 1.45 m and 1.33 m
- Relative accuracies are **0.6 m**, 1 m and 0.3 m, respectively.
Map Preview in Demonstration

(a) high zoom factor

(b) low zoom factor

Source: TransSec Deliverable D2.2 Galileo Positioning System for Trucks
Outlook
Electronic Horizon Provider

Electronic Horizon provides **Most Probable Path** of ego-vehicle in near future

Map Aiding

https://www.infoware.de/en/automotive/electronic-horizon/

Digital Roadmap = Model of the Real World

Map

Real World

Truck

inaccuracy of position

inaccuracy of Map

Digital Roadmap = Model of the Real World
Outlook

Positions of traffic signs and traffic lights

Traffic signs (source: https://www.alamy.com/stock-photo/forest-of-traffic-signs.html)

Positions of the traffic signs and traffic lights, lane marking are not available!

Traffic lights (source: Google Earth Street View)

Traffic signs (source: Google Earth Street View)

Enhanced Static Map
Acknowledgement

The investigations published in this article are granted by GSA (European GNSS Agency) within the H2020-GALILEO-GSA-2017 Innovation Action with Grant Agreement Nr.:776355. Therefore the authors cordially thank the funding agency.
Vielen Dank!

Contact
Dr.-Ing. Li Zhang/ M.Sc. Jinyue Wang/ M.Sc. Martin Wachsmuth/
Prof. Dr.-Ing. habil. Volker Schwieger
E-Mail li.zhang@iigs.uni-stuttgart.de
Telefon +49 (0) 711 685-84049
www.iigs.uni-stuttgart.de/

Universität Stuttgart
Institute of Engineering Geodesy
Geschwister-Scholl-Str.24D
70174 Stuttgart