Presented at the FIG Working Week 2019, April 22-26, 2019 in Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"
Comparison of the Effect of High-Latitude and Equatorial Ionospheric Scintillation on GPS Signals During the Maximum of Solar Cycle 24

David Mulindwa (RSU, FISU)
Institution of surveyors of Uganda
EagleCORS Uganda
Brief: What is Ionospheric Scintillation

Random amplitude and phase fluctuations observed in radio signals propagating through electron density irregularities in the ionospheric plasma and most commonly occurs in equatorial, auroral, and polar regions.
Radio scintillation is the term used to represent the random fluctuations in signal phase and amplitude that develop when the radio waves propagate through ionospheric electron density irregularities.

Irregularly structured ionospheric regions can cause diffraction and scattering of trans-ionospheric radio signals. When received at an antenna, these signals present random temporal fluctuations in both amplitude and phase. This is known as ionospheric scintillation.

Severe scintillation of the GPS satellite signals can result in loss of satellite tracking, which degrades GPS positioning accuracy. Even when satellite tracking is maintained, scintillation can cause errors decoding the GPS data messages, cycle slips, and ranging errors.
Plasma moves easily along field lines.

Upward plasma drift supports plasma against gravity \( \Rightarrow \) unstable configuration.

E-region “shuts out” electrodynamic instability during day.

At night, E-region conductivity too small to shut-out E field.

Instability in plasma grows to form equatorial plasma bubbles (EPBs), which contain irregularities seen by radars (right image) & which disrupt communications.

Irregularities mainly present during quiet times.
GNSS Signal Scintillation in Equatorial Region

Small-scale irregularities of ionospheric electron density in space (Plasma bubbles) causes GNSS signal scintillation.

Plasma bubbles is more common at **equatorial region**, Mostly evening after sunset, Seasonal variation, Bubbles increase during severe solar activity.

By the plasma bubbles, GNSS signal diffracted and refracted this leads to:

1) Amplitude Scintillation
2) Phase Scintillation

Due to ionospheric scintillation, GNSS receiver performance is degraded:

- Signal power loss (likely Loss-of-Lock)
- Affects signal tracking
- Increase measurement noise
The most affected sites by Scintillation (2014-2016)

The most affected sites are in:

Brazil
West Africa
Scandinavia
Areas of Research:
Hoima
Masaka
Kampala

Registered drop in received satellites during “storms” that are often in the areas close to the rift valley.
Challenges:

- Amplitude scintillation, or short-term fading, can be so severe that signal levels drop below a GPS receiver’s lock threshold, requiring the receiver to attempt reacquisition of the satellite signal.

- Phase scintillation, characterized by rapid carrier-phase changes, can produce cycle slips in static observations.

- It can degrade the quantity and quality of the user measurements as well as the quantity and quality of measurement at the reference station;

- Sometimes “IS” challenges a receiver’s ability to hold lock on a signal or cause complete loss of use of signals for extended periods.
The ionosphere is the densest plasma between the Earth and Sun, and is traditionally believed to be mainly influenced by forcing from above (solar radiation, solar wind/magnetosphere).

Recent scientific results show that the ionosphere is strongly influenced by forces acting from below.

Research remains to be done: How competing influences from above and below shape our space environment.
Earth’s Ionosphere/Thermosphere Processes

Tides and Gravity Waves

Solar Wind

Plasmasphere Filling

Plasma Plume

Solar-Driven Tides

Gravity Waves

Corotation

Impulsive Heating-Driven Wind

E-Driven Downward Flow

Neutral Wind Drags Ions Up Field Line

Neutral Wind Drags Ions Down Field Line

Fountain Effect

O/Ny Disturbances

Currents

Neutral Upwelling From Heated Region

Ion/Neutral Escape

Auroral Heating Region

Magnetospheric Driven Ion Convection

Plume Trough

Equatorial Anomaly

Irregularities/Bubbles

Corotation

Gravity Waves

Irregularities

Ionospheric Cavity

Polar Ionosphere Cavity

Plasmasphere Draining and Heating

Magnetic Flux Tube

Magnetic Flux Tube

NASA/GSFC, internal use only :-)

Courtesy of Joseph Grebowsky, NASA GSFC
Mitigations:

• Incorporation of many satellites during observations (Use a complete GNSS Constellation) will improve the performance under scintillation conditions.
• Reduce on the re-acquisition time for a GNSS receiver. For deep fades that last less than a few tenths of a second, signals should be reintroduced back into the position solution within a few seconds or less.
Way forward

- In Uganda and central Africa, there is need to establish forecasting tools which will allow issuing warnings ahead of time, when a certain region will be affected by scintillations exceeding a certain threshold. This will allow to plan for “ionospheric outages” in a similar way as weather forecast is currently used for suspension of operation of airports when thunderstorms are approaching.

EagleCORS Uganda is looking for partners to develop such early warning systems along side the CORS network already established in Uganda.
Thank you for listening