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SUMMARY  

 

The millions of tons of plastics ending up in the ocean every year. Marine plastic litter is a 

global environmental problem with significant economic, ecological, public health and 

aesthetic impacts. In order to reduce those impacts and reduce plastics abundance, source of 

litter and they pathways need to be identified. Land based litter, transported by rivers to 

oceans, is estimated to be a major contributor but there is not comprehensive methodologies 

for providing quantitative data for assessment of riverine as well as ocean plastics. Currently, 

there are only regional assessments of plastics at on beaches and water columns. Beach 

surveys, is usually conducted by volunteer community groups, are highly accurate but are 

very constrained both spatially and temporally.  

Plastic litter is mostly concentrated at banks, coastlines and in upper layer of surface water 

bodies. Therefore, remote sensing from space and airborne platforms, available in different 

spatial, spectral and temporal resolution, has the potential to be a reliable source of long-term 

qualitative and quantitative information on large geographic areas. The distinguish plastics 

from surrounding classes, and assessment of it spatial extent and temporal variability, is 

possible due to unique spectral signature of polymers in near-infrared part of electromagnetic 

spectrum.  

In this paper, the object-pixel based algorithm for mapping plastic distribution at surface 

water is presente. High resolution WorldView-2 images are used to investigate optical 

properties of wet and dry plastics and asset the possibility of  multispectral images in 

detection of floating plastic at freshwater bodies. Those data represents useful information for 

determine priority sites for mitigating adverse impacts across broad areas and increasing 

water quality. 
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1. INTRODUCTION 

 

Our planet facing one of the biggest treats in human history. Global plastic production 

increases annually, reaching 335 million metric tonnes just in 2016. Only nine per cent of the 

nine billion tonnes of plastic the world has ever produced has been recycled (UNEPa, 2019). 

More than 8 million tonnes of plastics end up to the ocean each year which is equal to 

dumping a garbage track of plastic every minute (UNEPb, 2019). Most plastics is not 

biodegrade and during the time it just breaks down to smaller fragments known as 

microplastics. Microplastics becomes even larger thath because it is more difficult to remove 

it from ocean. Wide variety of marine organisms become entangled or ingest in these plastic 

product with direct and often deadly effects. In that way plastic and related toxic materials 

rising through the food chain onto our dinner tables. According to some estimates, at the rate 

we are dumping items such as plastic bottles, bags and cups after a single use, by 2050 oceans 

will carry more plastic than fish and an estimated 99 per cent of seabirds will have ingested 

plastic (UNEPa, 2019). But how much do we exactly know about sources, pathways, and 

trends in abundance of marine plastic litter, its harmful impacts on human and marine life? 

Unfortunately, a knowledge gap exists in terms of the temporal and spatial distribution of 

plastics. Although large concentrations of floating or suspended plastic debris are being 

observed or modeled those estimations are generally based on regional assessments of plastics 

on beaches and shipboard observation of large debris patches. This methods are time 

consuming both in collecting as well as the subsequent quantification and also spatially 

limited.  

Therefore, a compressive analysis of the spatial and temporal extent and abundance of debris 

at regional or global level and the monitoring tools are missing. Remote sensing technologies 

with moderate to high temporal, spectral and spatial resolution is one of the most promising 

methods and has the potential to be a reliable source of quantitative and qualitative 

information on a wide geographical scale. Applications of satellite and airborne remote 

sensing tools for assessing ocean plastic pollution is challenging duo to many different types 

and size of plastics. Areal images seem to be capable of mapping plastic pollution due to their 

high geospatial resolution. Moy et al. (2018), was created hot spot map of debris at Hawaii 

Island beaches by visual interpretation of orthorectified imagery mosaics at 2 cm ground 

sample distance. Karaoka, et al. (2018) was extracted the debris pixels form the aerial 

photographs by using color references on a CIELUV color space.  In addition, optical 

properties of both micro and macro plastic have been investigated along with case studies 

showing potential of remote sensing data in detection of plastics on water and land. Goddijn 

Murphy et al. (2018), suggested that fraction of plastic surface area can be mapped from air if 

reflectance of the clear sea surface and of the plastic are known. Garaba et all. (2018), 

investigated the SWIR spectral signatures of large plastic items detected in the ocean. Their 

results confirmed unique spectral feature common to plastic especially that ∼1215 and ∼1732 
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nm absorption features have potential applications in detecting ocean plastics from spectral 

information.  

Aoyama (2016), used high resolution satellite images WordView-3 and Spectral Angle 

Mapper for extraction of marine debris in the Sea of Japan, while Ge et al., (2016) was 

developed semi-automatic recognition of marine debris on beaches based on LiDAR data and 

Supported Vector Machine algorithm.  

The scale of the ocean problem is global, involving many countries and many stakeholders 

therefore the collaborative effort should be used to intercept ocean plastics on the land before 

they reach the sea. Land based sources are considered to be the dominant input of plastics into 

oceans, especially rivers draining areas with high population density and industrial 

development, represte key enter point of plastics debris to the ocean. Ten big rivers are source 

of more than 80 % of ocean plastic, eight of them is located in Southeast Asia. Collecting land 

sourced ocean plastic prior to entering the sea is relatively easy, requiring little energy and no 

skilled workforce, and are one of better short terms solutions (Campbell et al., 2017). 

The aim of this paper is to develop algorithm for detection of floating plastic at freshwater 

bodies based on high resolution remote sensing data. Additional, optical properties of wet and 

dry plastics will be investigate. 

 

2. SYUDY AREA 

 

The Drina River is located in east Republic of Srpska and its lower flow represent natural 

border between Serbia and Bosnia and Herzegovina. Drina is longest tributary of the Sava 

River and belongs to the Danube river watershed. It’s ordinate from the merging of the Tara 

and Piva rivers at Šćepan polje in Montenegro. The Drina is a very fast river with cold and 

greenish water, its average depth is 3 to 5 m while wide vary between 15 to up to 200 m. 

Power of river has been tamed by lakes and dams. Three hydroelectric power plants have 

been built on the Drina, which turned lower part of river course into a peaceful lake area. The 

river is not navigable, but together with the Tara it represents the main kayaking and rafting 

attraction in this part of Europe. 

 
Figure 1. Study area 

Drina River is considered as one of the most beautiful rivers in the former Yugoslavia but 

when plastic debris enter in environment all those beautiful landscapes despaired. 
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Unfortunately, Drine is one of the best examples for that. The tonnes of litter, plastic bottles, 

begs etc. floating in the Drina. More than 80 % of that litter is carried by Lim River, the 

longest Drina tributary and in same time the biggest polluter. The major source of litter are 

thousands of wild landfills located at river banks. During the raining period when water level 

increase the Lim wash away garbage from banks and carry it intro Drina. 

 

 
Figure 2. (a) upper flow  (b) lower Drina flow (source: http://www.rts.rs/page/tv/sr/story/22/rts-

svet/3300539/sasvim-prirodno-dva-lica-reke-drine-4-deo.html) 

 

Although, there are several wood floater which collect and prevent plastic from flowing over 

the problem need to be resolved systematically. First of all, the landfill site management 

system and humans awareness need to be improved. Also, the plastic collected from river  

should be recycled. 

 

3. MATERIALS 

 

WorldView-2, launched October 2009, is the first high-resolution 8-band multispectral 

commercial satellite. Operating at an altitude of 770 kilometers, WorldView-2 provides 46 cm 

panchromatic resolution and 1.85 meter multispectral resolution. It has an average revisit time 

of 1.1 days and is capable of collecting up to 1 million square kilometers of 8-band imagery 

per day (Digital Globe, 2019). The WorldView-2 images supply detail and geospatial 

accuracy, further expanding the applications of satellite images in both commercial and 

government usage including spectral analysis, mapping and monitoring, disaster management, 

exploration etc. List of WorldView-2 bands used in the plastic detection is showed at Table 1. 

Table 1. List of WorldView-2 bands used in this study 

Band W1 [µm] R1 [m] 

Blue  0.45-0.51 0.46 

Green 0.51-0.58 0.46 

Red 0.63-0.69 0.46 

NIR 0.77-0.895 0.46 

 

In this study, one standard satellite (level 2A) image captured at 15.08.2016, was used. Level 

2A apply radiometric, sensor and geometric correction. Standard product is mapped to a 

WGS84/ UTM zone 34 (EPGS 32634) cartographic projection. 
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3.2. Light reflectance of natural water 

 

Remote-sensing reflectance Rrs (λ) is a widely used parameter to express the spectral 

reflectance signature of a water body and is defined as (1): 

     (1) 

Where  is a water leveling radiance, and is downwelling irradiance just above the 

water surface. 

Water provides a semi-transparent medium for the electromagnetic radiation therefore 

downwelling irradiance partly reflects directly at water surface and partly penetrates in water 

body. In water body, light is absorbed and scattered in all direction. If the water is optically 

depth, the fraction of light that scatters back upwards and passes through water-air interface 

contain the information about optically active components (Goddijn-Murphy et. al, 2018). 

According to bio-optical theory the  observed immediately above the water surface sub 

surface can be expressed as (Gordon et al., 1975)(2): 

 

Where  represents total backscattering coefficient and  is total absorption 

coefficient. 

The main backscattering and absorption are function of optical active water components such 

as phytoplankton’s, suspending sediments etc. Natural water shows high reflectance in visible 

region while absorbs radiation in near infrared (NIR) wavelength and beyond. In the SWIR 

part of the spectrum, the pure water absorption is very high, and at very long SWIR 

wavelengths (λ > 1600 nm) even extremely turbid waters are effectively black (Shi and Wang 

2009) (the radiation completely absorbed by the water body).  

Buoyant floating ocean plastic is concentrated in the upper layer of oceans, mostly within the 

first 0.5 m (Kooi, et al., 2016). Plastic objects floating on the water surface change  duo 

to following characteristics: plastics reflects downwelling light differently than water,  

transmittance of downwelling light through plastic is different from transmittance through the 

air-water interface, and  subsurface upwelling light transmits through plastic differently than 

through the water-air interface (Goddijn-Murphy et. al, 2018). Therefore in the case of the 

floating plastic on the water surface total  is defined as (3): 

     (3) 

Where  is water leaving light,  is plastic leveling light. For transparent plastic 

 also include the subsurface upwelling light that is transmitted through the plastic. 

Equation (1) and (3) led to estimation of f (Eq.4) 

     (4) 

According to (4) the best option for plastic detection using single band algorithm would be 

wavelength where  is near to zero and where  is high. Regarding the band radio 

the best option would be wavelengths where  and . 

Plastic have characteristic absorbance and reflectance spectra in the near-infrared domain 

(~750–2500 nm) (Masoumi et al., 2012) but significant limitation for the direct detection 

using NIR spectral range is the strong absorption by water.   
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Feature more, using remote sensing data for mapping plastic is complicated due to different 

types, size, color, shape and level of degradation. Size and level of degradation plays 

important role in optical properties since physical and chemical properties: surface type, shape 

and transparency can change as plastic breakdown (Filella, 2015). Also, floating and 

submerged parts have a different spectral characteristics.  

 

4. METHODOLOGY  

 

In this paper, pixel –object model for mapping floating plastic litter based on high resolution 

optical satellite images was proposed. The proposed workflow is presented at figure 3. Its 

consists of algorithm for automatic water body extraction and algorithm for detection of 

plastic litter.  

The water body extraction is carried out by using Object Based Image Analysis (OBIA). 

OBIA approaches are commonly used on high spatial resolution data with limited spectral 

bands (e.g., red, blue, and green) and where image features are composed of more than one 

pixel. Grouping of those pixels into segments provides additional properties such as additional 

spectral information compared to pixels (mean band value, median values, minimum and 

maximum values, mean ratios, variance) but also spatial dimension like shape, size, distance, 

neighborhood, topologies etc. Segmentation algorithm aggregates the pixels into an object 

according to the one or more criteria of homogeneity and provides building blocks of object-

based image analysis. In this study Simple Non-Iterative Clustering (SNIC) algorithm is used 

for image segmentation. The SNIC algorithm begins with the centroids initialization, which is 

completed by sampling the pixels on a regular grid in the image plane. The affinity of a pixel 

to centroid is measured using distance in five dimensional space of color and spatial 

coordinates (Achanta & Susstrunk, 2017). In order to preform segmentation using SNIC, three 

parameters need to be defined: size, compactness and connectivity. Size represents the 

object’s seed location spacing in pixels. For image with N pixels, each of the K object is 

expected to contain N/K pixels. Assuming a square shape of object, the value of size 

parameter can be computed as  High value of compactness factor results in more compact 

objects at the cost of poorer boundaries (squared). SNIC enforcing connectivity from the start 

i.e. adjustment of initial object is defined according to the distances between those objects and 

their 4- or 8- connected pixel.  

The water index and threshold-based approach have been widely used for rapid and automatic 

water body mapping in large-scale regions (Yang and Chen, 2017; Tetteh and Schonert, 

2015). According to the water absorption/transmission characteristics the largest difference 

between the spectral signatures of water and the other land covers takes place in the SWIR 

region, so most water indexes use this band. Dou to limited spectral resolution, Normalized 

Difference Water Index (NDWI) defined by McFeeters (1996) is only choice for most high 

resolution images. Therefore NDWI, which maximizes the reflectance properties of water by 

minimizing the low reflectance of near infrared (NIR) and maximizing the reflectance in the 

green wavelength, is used in this study. To avoid subjectivity in the choice of the threshold 

and to maximize the level of automation, we utilized a histogram thresholding approach using 

the Otsu algorithm. Otsu algorithm determine a threshold under assumption that the digital 

image contain bimodal histogram, one which is correspondent to water class and another 
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correspondent for other classes. Its maximize variance between water class and background 

noise, minimizing the probability of misclassification. One of the main problems with 

application of NDWI to high-resolution images for extraction of water body are shadows. 

Since the water bodies and dark shadows cannot be easily separated by this spectra additional 

object based characteristics are used. Identified polygons of water bodies represent mask for 

satellite images. Masked water pixels represent input data for plastic detection algorithm. 

Supervised pixel-based image analysis was carried out to identify two classes, plastic and 

non-plastic. The ground trough samples (training data) were located following a stratified 

random sampling design, according to visual interpretation of satellite images. After 

overlaying the training points onto layer stack, each bands spectral reflectance were extracted 

and indexes are calculated.  

The variables input to the neural network were standardized to the rang of the logistic sigmoid 

function (activation function), namely (0,1). The equation used for standardization was (5): 

     (5) 

Where  represent the value of the raw input variable for the ith training case;   is the 

maximum value of a training case; and  is minimum value of a training case in the 

dataset. The standardized reflectance value, band ratios and spectral indices were used as 

inputs to train neural network.  

In this study, supervised neural network, where there is known target of criteria, was used for 

mapping floating plastic. ANNs are pattern-recognition algorithms that capture salient 

features from a set of inputs and map them to outputs. The main advantage of ANN, 

comparing with statistical classification methods, consist of learning complex patterns with 

help of non-linear complex relationship between dependent and independent variables, 

generalization in presence of noisy environment, which makes ANNs robust even in case of 

incomplete or imprecise data, incorporate different types of datasets and physical constraints 

into analysis (Gonçalves Mendes & Porfírio Dal Poz, 2018; Fareed and Thuan, 2017). The 

architecture of ANN is defined by input, one or more hidden layers and output layer. Each 

layer comprises a predetermined number of highly interconnected computational elements, 

known as neurons. The input layers consists the set of neurons that represents predictor or 

independent variables (in this case radiance measurement of different wavelengths) i.e. the 

number of neurons in this layer correspondents to the dimensionality of the input data. Hidden 

layers consists of varying number neurons where input data are multiplied by its connections 

weights parameter, summed and passed through the nonlinear sigmoid function. The number 

of nodes in the hidden layer depend on the complexity of the approximated function and 

sample numbers. Usually, the number of hidden layers and neurons is experimentally 

determined. The output layer is represented by number of classes. 

The input data to this network is the feature vector extracted from the data to be classified. 

The Jefferies Matusita (JM) distance was calculated for different combination of input layers 

(band ratios such as NIR/R, NIR/G, NIR/B, R/G, R/B, spectral indexes including NDWI and 

NDVI and spectral bands R, G, B. NIR) to determine the best combination for mapping 

plastic litter at river Drina. The JM distance is widely used statistical separability criterion. Its 

tends to suppress high separability values, whilst overemphasizing low separability values.  

JM separability criterion (J) between two classes   and  has been defined as follows (5) 

(Swain and Davis 1978): 
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     (5) 

Where  is the is the Bhattacharyya distance between the classes   and , defined as 

(6)(Swain and Davis 1978): 

    (6) 

Where  and are the conditional probability density functions of random 

variable x, given the data classes  and , respectively.                                                                                                                      

 
Figure 3. Workflow 

 

 

The JM distance which ranges between 0 (low separability) and 2 (high separability), 

provides a general measure of separability between two classes acording to thair probability. 
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Architecture of neural network was defined by selecting the appropriated number of hidden 

layers. The number of hidden layers were analyzed by trial and errors in order to minimize 

root mean square error (RMSE) (7) at the training phase. 

   (7) 

The ANN technique was applied after splitting the data into 70% for training and 30 % for 

testing of results. The first, set of weights is randomly initialized and then, the training pixels 

are propagated forward to estimate the output values for each training pattern set. Each 

neurons receive the weighted inputs from other neurons, sums these weighted inputs and 

passed through the nonlinear sigmoid function and send this output to another neuron. In the 

second phases, the error between known and estimated outputs is fed backward trough 

network and weights are optimize. The process is iterative, and weights will be updated until 

the error is minimal. Validation is based on visual inspection of results. 

 

Results and Discussion  

Among the tested combinations of input layers, the highest value of (JM=1.37) was obtained 

for B4 and NDWI indicating the moderate separability between plastic and non plastic. In 

order to verify the capability of ANN in mapping floating plastics, developed model was 

applied to the water pixel extracted from WorldView-2 image. The network was trained by 

testing different architectures with two or three hidden layers and varying the number of 

neurons in each layer. The architecture 2-9-14-2 which produced lowest RMSE (RMSE = 

0.03) was selected.  The training data are represented by points since size of plastic is smaller 

than spatial resolution of satellite image. The total number of training points was 2540, from 

which 956 represents plastic. Validation of results was performed by visual comparison of 

classification results and original WorldView-2 satellite image. The results of classification 

are presented at figure 4. Generally, ANN tend to underestimate the surface covered by plastic 

litter. The classification results are highly correlated with size and level of plastic submerge. 

The large area covered by plastic i.e. pure plastic pixels are well detected (Figure 4 (a), (c)) 

but mixed pixels are almost completely omitted (Figure 4 (b),(d)). As expected, the spectral 

reflectance of pure plastic pixels was higher then water and much more consistent then mixed 

one (Figure 5). Dou to presence of water in mixed pixel the reflectance is lower comparing 

with plastic and signature is more similar to non-plastic class. Regarding the separation 

between wood and plastic ANN performed well since wooden floater isn’t misclassified as 

plastic. The true ground data are needed to provide deeper insight in the quality of results 

since some of the omitted pixels can be branches and different kind of wood.  
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 WorldView-2 ANN SVM 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

  
 

   

Figure 4. Comparison of classification results and original image 
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Figure 5. Spectral signatures of subclasses 

 

In addition to ANN, the SVM algorithm was tested at study area. The same training set was 

used for both algorithms. SVM detect mixed pixel as plastic but also produce large over 

estimation (Figure 4). Almost all shallow waters are detected as plastic by SVM. Since the 

water reflectance increase with the presence of river bed, the shallow waters have a similar 

spectral signature in NIR part of spectrum, which is crucial for plastic detection (Figure 5).  

In addition, detection of floating plastic is extremely complicated in freshwaters due to the 

higher subsurface reflectance in the NIR spectrum. The spectral reflectance of water change 

significant with presence of optical active quality parameters. Elements such turbidity, 

suspended solid, mud, phytoplankton’s increase the reflection resulting to similar spectral 

characteristic as plastic. Since larger concentrations of plastic in river Drina are highly 

correlated with raining, same as turbidity and suspended solids, even clear pixels can be 

omitted. Also, freshwater are more likely to have emerging vegetation interfere with 

downwelling irradiance. The ocean are larger and generally cleaner than freshwater bodies 

which eliminated the most of the problems detected in this study. It is expected that developed 

algorithm will provide better results in mapping floating plastic at Open Ocean.  

 

5. CONCLUSION  

This paper describe an experimental study with the main focus on the detection of  floating 

plastic debris in freshwaters based on an ANN classification procedure of high resolution 

multispectral WorldView-2 images.  

The proposed workflow consists of algorithm for automatic water body extraction and 

algorithm for detection of plastic litter. Due to limited spectral and high spatial resolution the 

water body extraction was preformed by using object based image analysis and water indexes. 

In the second algorithm only water pixels are used. The Jefferies Matusita distance is 

calculated in order to select optimal input layer for neural network. The number of hidden 

layers is determined by trails and errors. The architecture 2-9-14-2 was produced lowest 

RMSE (RMSE= 0.03) at testing phase and was selected for detection of plastic.  Finally, 

water pixels are classified into two classes: plastic and non-plastic. Validation of algorithm 

was performed by visual inspection of results. Generally ANN tends to underestimate floating 

plastic. The pure plastic pixels are detected. Mixed pixel, duo to presence of water has lower 

spectral reflectance, are mostly omitted. Additionally, Supported Vector Machine algorithm 
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tested by using same training data. Produced results suggest the large overestimation. Most of 

the shallow waters are classified as plastic.  

Since freshwater contain large number of mixed pixel and their spectral signature is function 

of optical active parameters such as mud, turbidity, suspended solids, phytoplankton’s etc. It 

is expected that this algorithm will provide better results in detection of floating plastic in the 

open ocean. 

The limits of presented workflow are the absence of SWIR band in the used WorldView-2 

images and absence of true data which would provide deeper insight into results. Our future 

work will be focused on the optimization of proposed algorithm and application of ultra-high 

resolution UAV images for plastic detection.  
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