FIG WORKING WEEK 2019
22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"
Practical Issues and Solutions in BIM GIS Interoperability

Enrico Romanschek, Tim Kaiser, Christian Clemen
BIM GIS Interoperability

Interoperability approaches

Integrated unified federated

Organizational technological conceptual

Business Processes Service Data

Interoperability concerns Interoperability barriers

cf. ISO 11354-1
Our Principle

• We want to rely on Open-BIM standards → IFC

• The implemented tools follow a integrated conceptual and data driven interoperability concept

integrated
caseptual
Data
Need for Georeferencing BIM

Issue:
- Co-ordinated placement of related BIM-Models required
- Way of georeferencing should be identifiable
- Pessimistic assumption: building models in IFC are not perfectly referenced in practice

Our Solution:
- Delivered BIM-Models should be automatically checkable for georeferencing
 → Level of Georeferencing Concept
 → GeoRefChecker tool
Level of Georeferencing (LoGeoRef) Concept

- The higher the LoGeoRef is, the more information of georeferencing
- Increment is 10 with intermediate steps possible e.g. for elevation or project specific extensions
- Higher levels do not automatically include information out of lower levels.
LoGeoRef 10

- Simplest way to add (indirect) georeferencing information using an address
- Address defined by: Postal code, town, region, country and address line
- Only a rough approximation for setting the location of a IfcSite or IfcBuilding
LoGeoRef 20

- IfcSite instances must contain RefLatitude and RefLongitude
- Specified as geographic coordinates with respect to WGS84
- Elevation as a metric value related to a local datum
LoGeoRef 30

- Georeferencing on IfcBuilding/-Site level using a single point and the direction of X- and Z-axis
- No specification of used CRS
- Kind of misuse since IfcProject should contain these information
LoGeoRef 40

- Georeferencing for IfcProject using IfcGeometricRepresentationContext
- World CRS can be specified
- In addition: true north attribute \(\theta \) deviation of project north to true north
LoGeoRef 50

- Specifies transformation parameters for transforming from the local coordinate system to the world coordinate system using a IfcMapConversion
- Ability to specify EPSG-Code
- Introduced in IFC Version 4
Solution: GeoRefChecker tool

- Application for determining the LoGeoRef for a IFC-File
- saves result in a Log-File
GeoRefChecker updating function

- Extracts building footprints and saves it as Well Known Text
- Place building accordingly in map and write back results of LoGeoRef 50 to IFC File
Need for **Digital Terrain Models** in BIM
Need for Digital Terrain Models in BIM

• Correct Placement of building models
Need for **Digital Terrain Models** in BIM

- Correct Placement of building models
- Clash Detection
Need for **Digital Terrain Models** in BIM

- Correct Placement of building models
- Clash Detection
- Visualization
Need for Digital Terrain Models in BIM

Issue:
• Different GIS/CAD file formats (LandXML, DXF, …)
• Different BIM-Viewer capabilities
• not everyone has professional BIM software
Need for **Digital Terrain Models** in BIM

Issue:
- Different GIS/CAD file formats (LandXML, DXF, …)
- Different BIM-Viewer capabilities
- Not everyone has professional BIM software

Our Solution:
- Small tool, reads different file formats, writes IFC only
- TINs preferred
- Different IFC geometric representations possible
Different Input File Formats

- Reading is possible if a format description available (LandXML, DXF, …)
- The main problem is the geometric representation of the DTM.
Different Input File Formats

- Reading is possible if a format description available (LandXML, DXF, …)
- The main problem is the geometric representation of the DTM.
Different Input File Formats

- Reading is possible if a format description available (LandXML, DXF, …)
- The main problem is the geometric representation of the DTM.

Grid

Irregular Points
Different Input File Formats

- Reading is possible if a format description available (LandXML, DXF, …)
- The main problem is the geometric representation of the DTM.

Grid

Irregular Points

Points and Breaklines
Different Input File Formats

- Reading is possible if a format description available (LandXML, DXF, …)
- The main problem is the geometric representation of the DTM.

Grid → Irregular Points → Points and Breaklines → TIN
How to represent DTM geometry in IFC?

- Terrain is geometrically represented by an closed surface
- Three IFC types of geometric representation are suitable, depending on input format and viewer capabilities:
How to represent DTM geometry in IFC?

- Terrain is geometrically represented by an closed surface.
- Three IFC types of geometric representation are suitable, depending on input format and viewer capabilities:

<table>
<thead>
<tr>
<th></th>
<th>IfcGeometric-CurveSet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>possible</td>
</tr>
<tr>
<td>Points</td>
<td>possible</td>
</tr>
<tr>
<td>Points and Break lines</td>
<td>best</td>
</tr>
<tr>
<td>TIN</td>
<td>possible</td>
</tr>
</tbody>
</table>

since IFC Version 4
How to represent DTM geometry in IFC?

- Terrain is geometrically represented by an closed surface.
- Three IFC types of geometric representation are suitable, depending on input format and viewer capabilities:

<table>
<thead>
<tr>
<th></th>
<th>IfcGeometric-CurveSet</th>
<th>IfcShellBased-SurfaceModel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>possible</td>
<td>O</td>
</tr>
<tr>
<td>Points</td>
<td>possible</td>
<td>O</td>
</tr>
<tr>
<td>Points and Break lines</td>
<td>best</td>
<td>O</td>
</tr>
<tr>
<td>TIN</td>
<td>possible</td>
<td>good</td>
</tr>
</tbody>
</table>
How to represent DTM geometry in IFC?

• Terrain is geometrically represented by an closed surface
• Three IFC types of geometric representation are suitable, depending on input format and viewer capabilities:

<table>
<thead>
<tr>
<th></th>
<th>IfcGeometric-CurveSet</th>
<th>IfcShellBased-SurfaceModel</th>
<th>IfcTriangulated-FaceSet*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>possible</td>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>Points</td>
<td>possible</td>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>Points and Break lines</td>
<td>best</td>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>TIN</td>
<td>possible</td>
<td>good</td>
<td>best</td>
</tr>
</tbody>
</table>

*since IFC Version 4
How to represent DTM in IFC semantically?
How to represent DTM in IFC semantically?

- Since IFC Version 4 special Entity for geographic Elements IFCGEOGRAPHIELEMENT with PredefinedType: TERRAIN

```plaintext
#31=IFCTRIANGULATEDFACESET(#20, #14, #1, #11, #10, #4, #7, #8, #23, #24, #29, #25),
#32=IFCSOLIDREPRESENTATION(#21),
#33=IFCGEOGRAPHIELEMENT('1Vg55cd05BxRz6_NHnevVd', #2, 'TIN', $, $, #34, #39, $, .TERRAIN.);
#34=IFCLocalPlacement(#23, #39),
#35=IFCAXIS2DPlacement3D(#36, #38, #37);
```
How to represent DTM in IFC semantically?

• Since IFC Version 4 special Entity for geographic Elements IFCGEOGRAPHICELEMENT with PredefinedType: TERRAIN

• Workaround for older IFC Versions, direct use of IFCSITE (Downside → lost of semantic information)

```plaintext
#31=IFCTRIANGULATEDFACESET(\[...\],\{1,4\},\{1,4\},\{2,1\},\{2,1\},\{3,4\},\{3,4\}),
#32=IFCSPACEREPRESENTATION(\[\#31\],\#32);,
#33=IFCGEOPHYSICALELEMENT('1V55c06S5BxRz6_NHnevVd',\#2,'TIN',\$,\$,\#34,\#39,\$,\$.TERRAIN.);
#34=IFCLocalPlacement(\#29,\#35),
#35=IFCAXIS2PLACEMENT3D(\#36,\#38,\#37);
#32=IFCSPACEREPRESENTATIONCONTEXT(\"Building Plan View\",\"Plan\",\#21,\#22);,
#24=IFCSITE('OnRyb1b17i18aDuUimCC$Z',\#2,\"Site with Terrain\",\$,\$,\#25,\#44193,\$,\$.ELEMENT.,\$,\$,\$,\$);
#26=IFCAXIS2PLACEMENT3D(\#27,\#29,\#30);
```
Implementation

- Small desktop application built on .Net-Framework and xBIM-Toolkit*
Implementation

- Small desktop application built on .Net-Framework and xBIM-Toolkit*
- 3-Step conversion:
 1. Read Source

*docs.xbim.net
Implementation

- Small desktop application built on .Net-Framework and xBIM-Toolkit*
- 3-Step conversion:
 1. Read Source
 2. Configure

*docs.xbim.net
Implementation

- Small desktop application built on .Net-Framework and xBIM-Toolkit*
- 3-Step conversion:
 1. Read Source
 2. Configure
 3. Write IFC
Results
Results
Results
Tools are available for download!

- http://www.dd-bim.org/?page_id=31

- Contact us if you find any bugs :)
 dd-bim @ htw-dresden.de