Analysis of De-correlation Filters Performance For Estimating Temporal Mass Variations Determined From GRACE-Based GGMs Over Konya Basin

Emel Zeray Öztürk¹, Walyeldeen Godah², R. Alpay Abbak¹

¹ Selçuk University, Geomatics Eng. Dept., Konya Turkey

² Institute of Geodesy and Cartography, Warsaw, Poland
1. Introduction
2. Data Used and Study Area
3. Method
4. Results
5. Conclusions and recommendations
1 Introduction

• GRACE Mission (March 2002- October 2017)

• GRACE Follow-On (ca. May 2018 – ca. May 2023)
1 Introduction

- Tectonic motions (e.g. Mikhailov et al., 2004; Choi et al., 2006; Han and Simons 2008)
- Ocean mass variations (e.g. Chambers, 2009)
- Glacier melting (e.g. Slobbe et al., 2009)
- Level changes in groundwater sources (e.g. Swenson and Wahr 2003; Schmidt et al., 2006; Chen et al., 2008; Cazenave and Chen, 2010)

GRACE gravitational field solutions are often used to estimate the equivalent water thickness (EWT) because of their high sensitivity to hydrological changes at the global and regional scales.
1 Introduction

- Release 1
- Release 2
- Release 3
- Release 4
- Release 5 (RL05)

- Gaussian Filtering Method
- De-correlation Filtering Method
The basin spreads over an area of almost 5 million hectares, is one of the regions where mass variations are most intense.
2 Data Used and Study Area

- GFZ
- JPL
- CSR centers (filtered with DDK1, DDK2, DDK3, DDK4, DDK5, DDK6, DDK7, DDK8)

➢ The GGMs are released on the ICGEM website http://icgem.gfz-potsdam.de/home

➢ The coefficients of all data centers were cut at 60 d/o.
2 Data Used and Study Area

- WaterGAP (Water Global Assessment and Prognosis) Global Hydrological Model (WGHM) was used to compare GRACE-based GGMs in the study. WGHM, produced at 0.5° × 0.5° spatial resolution and monthly runoff and river discharge, is based on meteorological and hydrological datasets.

- In addition to WGHM data, Mascon (mass concentration) solutions produced by the JPL were used as second evaluation data.
3 Method

FORMULAE

\[
EWT^{(GRACE)} = \frac{R \cdot \rho_{av}}{3} \sum_{n=0}^{N_{max}} \left(\frac{2n + 1}{1 + k_n} \right) \sum_{m=0}^{n} \bar{Y}_{nm}(\varphi, \lambda)
\]

\[
\Delta EWT_i^{(GRACE)} = EWT_i^{(GRACE)} - EWT^{(GRACE)}_{\text{mean}}
\]

\[
\Delta EWT_i^{(WGHM)} = EWT_i^{(WGHM)} - EWT^{(WGHM)}_{\text{mean}}
\]

\[
d \Delta EWT_i = \Delta EWT_i^{(WGHM)} - \Delta EWT_i^{(GRACE)}
\]
Statistics of the differences between $\Delta EWT^{(WGHM)}$ and $\Delta EWT^{(GRACE)}$ obtained from GFZ

<table>
<thead>
<tr>
<th>Statistics[m] (P₁)</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std</th>
<th>Max-min</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDK1</td>
<td>-0.097</td>
<td>0.098</td>
<td>-0.004</td>
<td>0.045</td>
<td>0.194</td>
</tr>
<tr>
<td>DDK2</td>
<td>-0.139</td>
<td>0.081</td>
<td>-0.025</td>
<td>0.051</td>
<td>0.220</td>
</tr>
<tr>
<td>DDK3</td>
<td>-0.162</td>
<td>0.098</td>
<td>-0.037</td>
<td>0.061</td>
<td>0.260</td>
</tr>
<tr>
<td>DDK4</td>
<td>-0.165</td>
<td>0.118</td>
<td>-0.033</td>
<td>0.065</td>
<td>0.283</td>
</tr>
<tr>
<td>DDK5</td>
<td>-0.200</td>
<td>0.190</td>
<td>-0.009</td>
<td>0.079</td>
<td>0.390</td>
</tr>
<tr>
<td>DDK6</td>
<td>-0.221</td>
<td>0.227</td>
<td>0.006</td>
<td>0.089</td>
<td>0.448</td>
</tr>
<tr>
<td>DDK7</td>
<td>-0.293</td>
<td>0.299</td>
<td>0.045</td>
<td>0.130</td>
<td>0.592</td>
</tr>
<tr>
<td>DDK8</td>
<td>-0.350</td>
<td>0.358</td>
<td>0.047</td>
<td>0.157</td>
<td>0.708</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics[m] (P₂)</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std</th>
<th>Max-min</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDK1</td>
<td>-0.123</td>
<td>0.125</td>
<td>0.004</td>
<td>0.054</td>
<td>0.248</td>
</tr>
<tr>
<td>DDK2</td>
<td>-0.093</td>
<td>0.164</td>
<td>0.032</td>
<td>0.055</td>
<td>0.257</td>
</tr>
<tr>
<td>DDK3</td>
<td>-0.092</td>
<td>0.210</td>
<td>0.049</td>
<td>0.063</td>
<td>0.302</td>
</tr>
<tr>
<td>DDK4</td>
<td>-0.096</td>
<td>0.207</td>
<td>0.049</td>
<td>0.066</td>
<td>0.303</td>
</tr>
<tr>
<td>DDK5</td>
<td>-0.097</td>
<td>0.274</td>
<td>0.059</td>
<td>0.077</td>
<td>0.371</td>
</tr>
<tr>
<td>DDK6</td>
<td>-0.114</td>
<td>0.337</td>
<td>0.077</td>
<td>0.085</td>
<td>0.451</td>
</tr>
<tr>
<td>DDK7</td>
<td>-0.177</td>
<td>0.507</td>
<td>0.133</td>
<td>0.128</td>
<td>0.684</td>
</tr>
<tr>
<td>DDK8</td>
<td>-0.228</td>
<td>0.556</td>
<td>0.145</td>
<td>0.162</td>
<td>0.784</td>
</tr>
</tbody>
</table>
4 Results

Without-filtering

DDK5

DDK4

DDK3

DDK2

DDK1

Gaussian-300 km

Gaussian-500 km

Gaussian-700 km
4 Results
4 Results
4 Results
4 Results

Statistics of the differences between $\Delta EWT^{(WGHM)}$ and $\Delta EWT^{(GRACE)}$

<table>
<thead>
<tr>
<th>Statistics[m]</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Std</th>
<th>Max-min</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1 CSR</td>
<td>-0.127</td>
<td>0.079</td>
<td>-0.022</td>
<td>0.047</td>
<td>0.206</td>
</tr>
<tr>
<td>CSR</td>
<td>-0.098</td>
<td>0.097</td>
<td>0.004</td>
<td>0.045</td>
<td>0.194</td>
</tr>
<tr>
<td>GFZ</td>
<td>-0.132</td>
<td>0.084</td>
<td>-0.021</td>
<td>0.050</td>
<td>0.216</td>
</tr>
<tr>
<td>P_2 CSR</td>
<td>-0.160</td>
<td>0.100</td>
<td>-0.028</td>
<td>0.057</td>
<td>0.260</td>
</tr>
<tr>
<td>CSR</td>
<td>-0.123</td>
<td>0.125</td>
<td>0.004</td>
<td>0.054</td>
<td>0.248</td>
</tr>
<tr>
<td>GFZ</td>
<td>-0.169</td>
<td>0.104</td>
<td>-0.028</td>
<td>0.061</td>
<td>0.273</td>
</tr>
<tr>
<td>JPL</td>
<td>-0.127</td>
<td>0.079</td>
<td>-0.022</td>
<td>0.047</td>
<td>0.206</td>
</tr>
<tr>
<td>JPL</td>
<td>-0.098</td>
<td>0.097</td>
<td>0.004</td>
<td>0.045</td>
<td>0.194</td>
</tr>
<tr>
<td>JPL</td>
<td>-0.132</td>
<td>0.084</td>
<td>-0.021</td>
<td>0.050</td>
<td>0.216</td>
</tr>
<tr>
<td>JPL</td>
<td>-0.160</td>
<td>0.100</td>
<td>-0.028</td>
<td>0.057</td>
<td>0.260</td>
</tr>
<tr>
<td>JPL</td>
<td>-0.123</td>
<td>0.125</td>
<td>0.004</td>
<td>0.054</td>
<td>0.248</td>
</tr>
<tr>
<td>JPL</td>
<td>-0.169</td>
<td>0.104</td>
<td>-0.028</td>
<td>0.061</td>
<td>0.273</td>
</tr>
</tbody>
</table>
5 Conclusions and recommendations

✓ In this study, the performance of De-correlation filters for estimating temporal mass variations determined from GRACE-based GGMs over Konya basin is investigated.

✓ **DDK1 and DDK2 filters** are more suitable to reduce noise contained in RL05 GRACE-based GGMs, when estimating mass variations in the Earth system over Konya basin.

✓ It can be highly recommended to use RL05 GRACE-based GGMs developed by **GFZ center** in order to determine the mass changes in Konya basin.
Thanks!
Bettadpur S., (2012), UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005, GRACE 327–742, CSR Publ. GR-12- xx, Rev. 4.0, pp. 16, University of Texas at Austin.

References

• Kusche J., (2007), Approximate decorrelation and non-isotropic smoothing of time variable GRACEtype gravity field models, J. Geod. 81(11), pp. 733–749.

References

