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SUMMARY 

  

The German market transparency is mainly realized by results of analyzing purchase prices. Often, 

the purchases are analyzed in the context of a regression approach. The results are only reliable in 

areas with large numbers of purchases. However, in areas with only few transactions the solution of 

regression is not satisfactory. Furthermore, the purchase prices may contain outliers. Especially in 

areas with few transactions, the detection of outliers is a challenging task. This study presents three 

different estimation approaches which are dealing with outliers. The first approach uses the data 

snooping to detect the outliers. The second approach is based on a heuristic RANSAC (random 

sample consensus) algorithm. The third approach uses non–informative robust Bayesian regression 

techniques, in which the normal distribution of the likelihood data is replaced by a Student–

distribution to ensure the robustness. The aim of this study is to investigate these three approaches 

in their efficiency to deal with outliers in areas with few transactions. For this purpose a closed loop 

simulation is carried. The results of the three robust approaches are compared based on the known 

regression coefficients and on the known observations. The results of the data snooping and 

RANSAC show that the estimation fail more often than the estimation by means of the robust 

Bayesian approach, which shows a suitable result for areas with few transactions. 

 

ZUSAMMENFASSUNG 

 

Die Markttransparenz in Deutschland wird hauptsächlich durch die Ergebnisse von analysierten 

Kaufpreisen realisiert. Meistens werden die Kauffälle mit einem Regressionsansatz  untersucht. Die 

Ergebnisse sind nur für Gebiete mit einer großen Anzahl an Kauffällen zuverlässig. Allerdings ist 

die Lösung der Regression für Gebiete mit wenigen Transaktionen nicht zufriedenstellend. 

Außerdem können die Kaufpreise Ausreißer enthalten. Vor allem in Gebieten mit wenigen 

Transaktionen ist das Finden der Ausreißer eine herausfordernde Aufgabe. Diese Studie präsentiert 

drei verschiedene Schätzansätze, die mit Ausreißern umgehen können. Der erste Ansatz verwendet 

das Data Snooping um die Ausreißer zu finden. Der zweite Ansatz basiert auf dem RANSAC 

Algorithmus. Der dritte Ansatz verwendet eine nichtinformative robuste bayessche 

Regressionstechnik. Die Normalverteilung der Likelihood Daten ist durch eine Student–Verteilung 

ersetz um die Robustheit zu gewährleisten. Das Ziel dieser Studie ist es diese drei Ansätze auf ihre 

Effizienz mit Ausreißern in Gebieten mit wenigen Transaktionen umzugehen zu untersuchen. 

Hierfür wird eine Closed Loop Simulation mit den drei Ansätzen durchgeführt. Die Ergebnisse der 

drei robusten Ansätze werden mittels der bekannten Regressionskoeffizienten und Beobachtungen 

verglichen. Die Ergebnisse vom Data Snooping und RANSAC zeigen ein erhöhtes Risiko das die 
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Schätzung versagt. Nur die Ergebnisse vom robusten bayesschen Ansatz zeigen ein adäquates 

Ergebnis für Gebiete mit wenigen Transaktionen. 
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1. MOTIVATION 

 

The demand for reliable market values in real estate valuation has been increasing over the last 

decade. One reason is the last subprime crisis, which was caused by a false assessment of the real 

estate market. The German market transparency is mainly realized by results of analyzing purchase 

prices. Often, the purchases are analyzed with a multiple linear regression, which allows for an 

adequate examination of the real estate market. For an accurate estimate of the regression 

coefficients, the regression model normally needs 15 purchases per independent variable 

(Ziegenbein 2010, Kleiber et al. 2014), but in areas with few transactions only few prices are 

available. Hence, in areas with only few transactions the solution of regression is not satisfactory. A 

small number of purchase prices cannot represent the heterogeneity of the real estate market. 

Furthermore, the purchase prices may contain outliers. Especially in areas with few transactions, the 

detection of outliers is a challenging task.  

 

Recently, property appraisers use their market expertise to determine market values in regions with 

few transactions. The few purchases are often not used methodically. Hence, a statistical approach 

would be preferable. In this context Alkhatib & Weitkamp (2013) and Weitkamp & Alkhatib (2014) 

suggested a robust Bayesian regression model to deal with the problems caused by outliers. They 

replaced the well-known normal distribution of the likelihood data by a Student-distribution that 

allows keeping outliers in the estimation but to down weight their influence on the estimated results. 

Furthermore, they used additional market information, e.g. results of an experts’ survey, in this 

robust Bayesian approach. The additional market information support the few available purchases 

in the estimation.  

 

The aim of this study is to investigate the efficiency of different robust estimation approaches to 

deal with outliers in areas with few transactions. One way of dealing with outlying observations is 

to apply data snooping with Baarda’s or Pope’s outlier test and to eliminate the detected outliers 

(Jäger et al. 2005). These tests are prone to fail; consequently, the results contain false and missed 

detections, especially when the outlier ratio is large. In this case the Random Sample Consensus 

(RANSAC) algorithm is an alternative, which allows up to 50% outliers in the data. This algorithm 

searches randomly for a given model the amount of observations with the largest number. Hence, 

RANSAC is a heuristic approach for outlier detection. However, the main disadvantage of data 

snooping or RANSAC to detect outliers is the reducing of the sample size. Another approach for 

dealing with outliers is the application of robust estimation approaches, which handle outliers by 

down-weighting their influence on the estimated values. Classical robust estimators are for example 

the L1–norm estimator or Huber’s M–estimator (Koch 1999). An alternative to the abovementioned 

classical robust estimators is a Bayesian robust estimator, in which the normal distribution of the 

likelihood function is replaced by a longer-tailed distribution as the family of the Student-
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distribution. The use of this Bayesian robust model that applies the Student-t in place of a normal 

distribution is on the one hand to down weight the influence of the occurring outliers, on the other 

side to assess sensitivity to the normal assumption by varying the degrees of freedom from large to 

small (Gelman et al. 2014).  

 

In this study we investigate the data snooping, RANSAC algorithm and the robust Bayesian 

approach via a closed loop simulation. Real purchase prices are used to create the simulation data. 

This allows for reproducing the characteristics of the real data in the simulation. Furthermore, the 

simulation data includes also outliers. The results of the three estimators are compared based on the 

known regression coefficients and on the known simulated observations.  

 

2. MATHEMATICAL BASICS 

 

2.1 Multiple Linear Regression in Real Estate Valuation 

 

Since decades, the multiple linear regression is used as tool in the real estate valuation. In the sales 

comparison approach the input quantities of a real estate (e.g. area of lot or standard land value) 

explain the purchase price by the regression model (Ziegenbein 1977). The functional model 

follows:       

𝑦𝑖 = 𝛽1 + 𝑥𝑖,1𝛽2 + ⋯+ 𝑥𝑖,𝑢−1𝛽𝑢 + 𝑒𝑖   ;   𝑖 = 1,… , 𝑛  ;   𝑒𝑖~𝑁(0, 𝜎2). Eq. 1 

The dependent variable 𝑦𝑖 (in our case: standardized purchase price) of 𝑛 observed purchases is 

explained by a linear combinations of the independent variables 𝑥𝑖,1, … , 𝑥𝑖,𝑢−1 and the 𝑢 unknown 

regression coefficients 𝜷. The residuals 𝑒𝑖 are the differences between predictions and observations 

that arise as measure of the not explainable spread between model and reality. They have to obey 

the normal distribution with the mean value 0 and the variance 𝜎2. The unknown regression 

coefficients are usually estimated by means of the method of least squares (Fahrmeir et al. 2013, 

Koch 1999). Then 𝜷 is given by: 

�̂� = (𝑿𝑇𝑿)−1 𝑿𝑇 𝒚 . Eq. 2 

Further discussion of regression analysis can be found in e.g. Fahrmeir et al. (2013). 

 

2.2 Data Snooping 

 

The classic approach of dealing with outliers is to apply the data snooping. The data snooping based 

on a hypothesis test statistics, e.g. Baarda test (Baarda 1968) or Pobe test (Pobe 1976). At first for 

test statistics a hypothesis 𝐻0 is required: 

accept 𝐻0  if    𝑇𝑖 < 𝑐 

reject 𝐻0  if    𝑇𝑖 ≥ 𝑐 

where 𝑇𝑖 is the test value of the observation 𝑖 and 𝑐 is a critical value from the test distribution for a 

given confidence level 1 −  𝛼. The hypothesis is accepted, if the test value is smaller than the 

critical value. In this case, the null hypothesis will be accepted and it results that the observation 𝑖 
contains no outlier. In this paper, we use the Pobe test, which allows to detect outliers at unknown 

variance factor. The test value is calculated as follow: 
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𝑇𝑖 = √
�̂�𝑖

2

�̂�2𝑞𝑒𝑖
2    ~   𝜏1−𝛼,1,𝑛−(𝑢+1). Eq. 3 

with 𝑸𝑒𝑒 = 𝑰 − 𝑿(𝑿𝑇𝑿)−1𝑿𝑇. Eq. 4 

The diagonal values from the cofactor matrix of residuals 𝑸𝑒𝑒 are the values 𝑞𝑒𝑖

2  in Eq. 3. The 

determination of the residuals �̂�𝑖 and the variance factor 𝜎2 are realized by: 

�̂�𝑖 = 𝒙𝑖𝜷 − 𝑦𝑖. Eq. 5 

�̂�2 =
�̂�2

𝑛−𝑢
 . Eq. 6 

The distribution of the test value 𝑇𝑖 given in Eq. 3 obey Pobe distribution 𝜏. For a given significance 

level 𝛼, we can derive the critical value 𝑐 for this test as follows: 

𝑐 = 𝜏1−𝛼,𝑟,𝑛−(𝑢+𝑟) = (
(𝑛−𝑢)𝐹1−𝛼,𝑟,𝑛−(𝑢+𝑟)

𝑛−𝑢−𝑟+𝑟 𝐹1−𝛼,𝑟,𝑛−(𝑢+𝑟)
)
1/2

. Eq. 7 

In the case that only one observation is detected as an outlier, the value 𝑟 in the 𝜏-distribution is 

one. We use here 𝛼 = 5% as significance level. The 𝜏-distribution is approximated by means of the 

𝐹-distribution, also known as Fisher distribution. Below are all important equations for 

implementation of the Pobe test and the data snooping: 

Step 1:  Estimate the regression parameters with Eq. 2.  

Step 2:  Calculate for each observation the test value 𝑇𝑖 and approximate critical value 𝑐 with the 

𝜏-distribution. 

Step 3:  If 𝐻0 is rejected in at least one observation, delete the observation with the largest 𝑇𝑖 value. 

Step 4:  Repeat step 1 to 3 until 𝐻0 is accepted for each observation. Then reestimate the regression 

coefficients with the reduced coefficient matrix 𝑿DS and observations 𝒚DS as follow: 

�̂�DS = (𝑿DS
𝑇 𝑿DS)

−1 𝑿DS
𝑇  𝒚DS. Eq. 8 

Consequently, the data snooping is an iterative process for detection and elimination of outliers. A 

detailed discussion of data snooping can be found in Jäger et al. (2005). 

 

2.3 Bayes Inference as Robust Approach 

 

In contrast to classical statistical inference, the Bayesian inference uses probability distributions to 

determine the unknown parameters of a regression model. The Bayesian inference is based on the 

Bayes’ theorem:  

𝑝(𝜷|𝒚) ∝ 𝑝(𝜷) ∙ 𝑝(𝒚|𝜷). Eq. 9 

In this equation 𝑝(𝜷) is the prior density of the regression parameters and the 𝑝(𝒚|𝜷) is denoted as 

likelihood function. The likelihood function represents the information of the observations (in our 

case: purchases). All additional information about the unknown parameters are expressed and 

modeled in the prior density. In case of real estate valuation, additional information are for example 

offer prices (Soot et al. 2016). 𝑝(𝜷|𝒚) is called posterior density, from it’s the posterior unknown 

regression parameters can be derived by given data 𝒚. Detailed information about the Bayesian 
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inference can be found in, e.g., Koch (2007), Gelman et al. (2014). In Alkhatib & Weitkamp (2012) 

and Weitkamp & Alkhatib (2012) a Bayesian approach was developed to combine normal 

distributed prior information, which was generated by interviews with valuation expert, with normal 

distributed likelihood, which summarizes the given data (purchases).  

 

The abovementioned assumptions are stated only if the quality of the data is ensured. So, e. g., if the 

data base contains some outliers, then the classical Bayesian regression approach can fail and an 

alternative robust Bayesian regression model should be used. The robustness can be realized, e.g., 

by assuming the Student-distribution for the likelihood function. The Student t-distribution has a 

longer tail than the normal distribution. Hence, observations with great dispersion have a smaller 

influence on the estimated parameters. For the data (here the purchases) in the context of the 

Bayesian multiple linear regression follow:  

𝑦𝑖|𝑿 ~ 𝑡(𝒙𝑖 ∙ 𝜷, 𝜎2 ;  𝜈 ). Eq. 10 

The observation 𝑦𝑖 is conditioned by the independent variables 𝒙𝑖 of the purchases. The 

observations are now assumed to obey the univariate Student-distribution. In Eq. 10 𝒙𝑖 ∙ 𝜷 is the 

center 𝜇 of the t-distribution. The variance 𝜎2 scales the t-distribution and 𝜈 is the unknown degree 

of freedom. The length of the tails of the t-distribution depends on the choice of 𝜈. If 𝜈 > 30, the t-

distribution is nearly equivalent with the normal distribution. Hence, the degree of freedom must be 

less than 30 for a robust estimate. In Gelman et al. (2014) a value of 4 is suggested for 𝜈. An 

alternative to fix 𝜈 is to estimate 𝜈 as unknown parameter (Geweke 1993). We use a fixed degree of 

freedom with 4 as suggested in Gelman et al. (2014). The term in Eq. 10 can be equivalent specified 

as follow: 

𝑦𝑖|𝑿, 𝑽𝑖  ~ 𝑁(𝒙𝑖 ∙ 𝜷, 𝑽𝑖)  ;  with 𝑽𝑖  ~ 𝑖𝑛𝑣 𝜒2(𝜎2, 𝜈). Eq. 11 

In this equation the observation 𝑦𝑖 is normal distributed under the condition of 𝑿 and 𝑽𝑖. The center 

of the normal distribution is the same as in the t-distribution. For Eq. 10 and Eq. 11 are equivalent, 

the variance of the normal distribution must follow an inverse 𝜒2-distribution. Now, we apply Eq. 

11 on the functional model of the multiple linear regression in Eq. 1. Thus follows: 

𝑦𝑖 = 𝛽1 + 𝑥𝑖,1 𝛽2 + ⋯+ 𝑥𝑖,𝑢−1 𝛽𝑢 + 𝑒𝑖  ;  𝑒𝑖~𝑁(0, 𝜎2𝜔𝑖). Eq. 12 

with (𝒆) = 𝜎2𝜴 ,      𝜴 =

[
 
 
 
𝜔1 0

𝜔2

⋱
0 𝜔𝑛]

 
 
 
 . Eq. 13 

The functional model in Eq. 12 is nearly identical with Eq. 1. The residuals 𝒆 in Eq. 12 are normal 

distributed, but the variance 𝜎2 and weights 𝝎 obey an inverse 𝜒2-distribution. The weights 𝝎 are 

summarized in the weight matrix 𝜴. Due to the prior assumption that 𝜎2 and 𝝎 are inverse 𝜒2-

distributed, the prior density of the Bayes’ theorem is now of the form 

𝑝(𝜷, 𝜎,𝝎) = 𝑝(𝜷) 𝑝(𝜎) 𝑝(𝝎). In this model the prior density of the coefficient 𝜷, standard 

deviation 𝜎 and weights 𝝎 are assumed to be independent among each other. Detailed formula 

descriptions of the prior densities and the likelihood function is presented in Geweke (1993). 

The Bayesian inference distinguishes between conjugate and nonconjugate prior distributions 

(Gelman et al. 2014). In case of conjugate prior, the posteriori density belongs to the same family of 
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distribution as the prior density. This has the advantage, that the posterior density can be solved 

analytically. Due to the use of the inverse 𝜒2-distribution as prior, the posterior distribution doesn’t 

belong to the same family of prior. In this case the posterior density must be solved numerically 

with Markov chain Monte Carlo (MCMC) methods. We use in this paper the Gibbs sampler (one of 

the most famous MCMC algorithm) to calculate the posterior density due to its simplicity.  

Another distinction in the Bayesian inference is the informative and noninformative prior 

distribution (Gelman et al. 2014). The reason for using noninformative prior distribution is the no 

existing of previous knowledge about the parameters, or we are interested in an estimate of our 

posterior parameters, which is not affected by external information to our current data. In the case 

of informative prior, it exists previous knowledge of the regression coefficients 𝜷, e.g. offer prices 

or knowledge of experts. In this paper the noninformative Bayesian approach, presented in Geweke 

(1993), is used.  

 

 

 

Eq. 14 

 

Eq. 15 

 

Eq. 16 

 

Eq. 17 

 

Figure 1: Calculation procedure for the Gibbs sampler. 

 

The MCMC implementation of this approach based on Gibbs sampler is shown in Figure 1. Firstly, 

we select for the Gibbs sampler initial values for 𝜷, 𝜎, 𝝎 and 𝜈. Based on this initial values, the 

marginal distribution of 𝜷, 𝜎 and 𝝎 can be iteratively approximated (see Figure 1, the loop from 0 
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to 𝑠2). In first step, the weights 𝝎 are drawn under the condition of 𝜷 and 𝜎 from the previous 

iteration (Eq. 15). After that, the variance 𝜎2 is drawn by means of Eq. 16 under the condition on 𝜷 

from the previous iteration and the new drawn weights 𝝎. The weights and variance are generated 

from a 𝜒2-distribution. Because of the division of the drawn numbers through the numerator of Eq. 

15 and Eq. 16 respectively, the weights and the variance are inverse 𝜒2-distribution as defined in 

Eq. 11. In third step the regression coefficients 𝜷 are generated according to Eq. 17. The regression 

coefficients are normally distributed conditional on the new drawn weights and variance from step 

one and two. The repetition of the abovementioned three-steps results in the desired Markov chain. 

The result of the loop is the mean (Eq. 14) and the variance of the conditional regression 

coefficients (𝜷|𝜎,𝝎) for the samples from 𝑠1 to 𝑠2. The precision and accuracy of the Gibbs 

sampler results depends inter alia on the choice of the number of iterations 𝑠2 and the warm-up 

period 𝑠1. Further discussion of MCMC and Gibbs sampler can be found in, e.g. Gelman et al. 

(2014). 

 

2.4 Random Sample Consensus 

 

The Random Sample Consensus (RANSAC) algorithm is introduced by Fischler & Bolles (1981). 

This algorithm is developed to deal with a very large outlier percentage (e.g. 50%) in the data set. 

Typical application areas of RANSAC are the image analysis or the terrestrial laser scanning 

(Hartley & Zisserman 2004). The advantage of RANSAC is its simple implementation for different 

mathematical models. In this paper, the multiple linear regression (Eq. 1) is used as functional 

model. The RANSAC algorithm is implemented with following four steps: 

Step 1:  Randomly choose of 𝑢 purchases from data set and compute the regression coefficient 𝜷(𝑗) 

(starting with 𝑗 = 1), which defines the hypothetical model 𝑀𝑗. 

Step 2:  Compute for the calculate coefficient 𝜷(𝑗) the residuals of all purchases and determine the 

observations whose residuals are smaller than the error tolerance 𝑆. These observations 

define the consensus set 𝑍𝑗 of the model 𝑀𝑗. 

Step 3: Go back to step 1 and repeat the process for another random choice of 𝑢 purchases from 

the data set until a specified number 𝑁 of iterations is reached. 

Step 4: Determine the model with the greatest consensus set 𝑍𝑚𝑎𝑥. Carry out an optimal estimation 

of the parameter vector 𝜷 with the purchases in 𝑍𝑚𝑎𝑥:  

�̂�RANSAC = (𝑿𝑍𝑚𝑎𝑥

𝑇 𝑿𝑍𝑚𝑎𝑥
)
−1

 𝑿𝑍𝑚𝑎𝑥

𝑇  𝒚𝑍𝑚𝑎𝑥
. Eq. 18 

The efficiency of RANSAC algorithm depends on the choice of the error tolerance 𝑆 and the 

number 𝑁 of iterations. The error tolerance can be interpreted as Euclidean distance between the 

observations and a model 𝑀𝑗. The numerical specification of the error tolerance based on the prior 

knowledge of the dispersion of the observations and the used functional model. If 𝑆 is selected too 

small, then good observations are interpreted as outliers. Otherwise, the outliers are interpreted as 

model conform if 𝑆 is too large. The choice of the iteration number 𝑁 can be approximated by the 

probability 𝑃 of randomly choosing at least one model 𝑀𝑗, which has no outliers in the 𝑢 

observations. The calculation of the minimum number of iterations follows (Hartley & Zisserman 

2004): 
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𝑁 =
𝑙𝑛(1−𝑃)

𝑙𝑛(1−(1−𝛿)𝑢)
 . Eq. 19 

The term 𝛿 is the outlier ratio in the data set. In the case that the outlier ratio is 25%, the model has 

6 regression coefficients and we choose a probability 𝑃 of 99%, the number of iterations 𝑁 

according to Eq. 19 is 24. Further discussion of RANSAC can be found in, e.g., Fischler & Bolles 

(1981), Hartley & Zisserman (2004). 

 

3. DEVELOPMENT OF A STRATEGY FOR THE INVESTIGATION 

 

In this paper, the focus lies on investigating the efficiency of the different estimation approaches to 

deal with outliers in areas with few transactions. Hence, a closed loop simulation is developed to 

validate the estimation approaches from Section 2. For this investigation strategy simulated 

purchases are required, which are derived from real purchases (see Subsection 3.2). The advantage 

of a closed loop simulation is, that we know the expected values of the regression coefficients and 

the purchase prices. This allows to compare the estimated results of the different approaches with 

the expected values. Detailed information about closed loop simulation and Monte Carlo are 

presented in Saltelli et al. (2008) and Kroese et al. (2011). 

 

3.1 Closed Loop Simulation 

 

The calculation process of the closed loop simulation is schematically illustrated in Figure 2. As 

input parameter the independent variables of purchases, which build the data set 𝑿, are required. In 

order to select reliable expected value E(𝜷) we use the estimated regression coefficient of the data 

set 𝑿. The error model 𝜳 can be set up by using a known distribution, or a combination of different, 

from which random noise is generated. The used error model is presented in Subsection 3.3. If all 

input parameters are given, then the expected values of the observations E(𝒚) are calculated by 

means of 𝑿 and E(𝜷). The expected values of the observations and the independent variables build 

the set 𝑫𝐴.  

 

 
Figure 2: Schematically sequence of the closed loop simulation. 
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The data set 𝑫𝐴 and the noise model 𝜳 are initial values for the closed loop simulation. At first, a 

set 𝑫𝑅
(𝑗)

 is compiled from set 𝑫𝐴 by ℎ times random drawing in every iteration 𝑗 (step 1). In step 2 

the simulated purchase prices 𝒚𝑅
(𝑗)

 are generated for the data set 𝑫𝑅
(𝑗)

. For this, the random noise 𝜺(𝑗) 

is generated from the noise model 𝜳 by ℎ times random drawing. The simulated purchase prices 

consist of the expected observations and the noise 𝜺(𝑗). The independent variables 𝑿𝑅
(𝑗)

 and the 

simulated purchase prices 𝒚𝑅
(𝑗)

 of the data set 𝑫𝑅
(𝑗)

 are the transactions on the simulated submarket. 

In step 3 the outliers in resulting simulated purchases of data set 𝑫𝑅
(𝑗)

 are removed. The resulting 

data set is denoted with 𝑫𝐹
(𝑗)

. In this study, we define outliers in the purchase price as observation, 

which differs significantly from the normal distributed noise in the submarket. For the detection of 

the outliers the threshold 𝑘 is specified. The selection of the threshold 𝑘 depends on the noise 

model 𝜳. A further discussion of the selection of 𝑘 are presented in Subsection 3.3. In step 4 the 

coefficients �̂� of data set 𝑫𝑅
(𝑗)

 are estimated using four estimation approaches introduced in Section 

2. In addition, the regression coefficients �̂�Ref
(𝑗)

 of the data set 𝑫𝐹
(𝑗)

 are estimated by the multiple 

linear regression (Eq. 2). The coefficients �̂�Ref
(𝑗)

 are used as reference values to the estimated 

coefficients �̂�Reg
(𝑗)

, �̂�𝐷𝑆
(𝑗)

, �̂�Bayes
(𝑗)

 and �̂�𝑅𝐴𝑁𝑆𝐴𝐶
(𝑗)

 of the data set 𝑫𝑅
(𝑗)

. This means that the estimated 

coefficients �̂�Ref
(𝑗)

 are only influenced by normal distributed noise, which corresponds to the optimal 

case that all outliers are detected by the data snooping. Furthermore, the root mean square error 

(RMSE) is calculated for all estimated coefficients (Eq. 21). Therefore, the residuals �̂�𝑙
(𝑗)

 are 

required. Note please that the expected purchase prices E(𝒚𝑙)
(𝑗) and not the simulated purchase 

prices 𝒚𝑙
(𝑗)

 are used in Eq. 20. Hence, the 𝑅𝑀𝑆𝐸𝑙
(𝑗)

 describes how well the predicted purchase prices 

correspond to the true values in the mean. The true value is unknown in praxis, because it is not 

possible to determine all error influences of one purchase reliably. Examples for error influences are 

the imperfection of the functional model to describe the reality or the individual purchase 

negotiation between seller and buyer.  

�̂�𝑙
(𝑗)

= 𝑿𝑙
(𝑗)

�̂�𝑙
(𝑗)

− E(𝒚𝑙)
(𝑗) . Eq. 20 

𝑅𝑀𝑆𝐸𝑙
(𝑗)

= √
1

𝑛𝑙
 ∑(�̂�𝑙

2 (𝑗)
) . Eq. 21 

𝑙 = Ref, Reg, DS, Bayes, RANSAC  

These four steps are repeated 𝑚 times in the loop. The number of iteration loops determines the 

precision of the simulation result. Repetitions of this simulation show that the different results are 

approximately equal for 𝑚 = 100’000. Therefore we fixed the number of iterations to 100’000 

iteration loops, which are sufficient for this study. The final result of the closed loop simulation is 

the mean and the variance of the 𝑚 estimated regression coefficients and RMSE values for the five 

estimations.   

 

3.2 Data Base 
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The data set which is used as input value for the simulation had been collected in Nienburg (Weser), 

a small city with approximately 30’000 inhabitants in the south of Lower Saxony. The spatial 

submarket of Nienburg (Weser) has a regular supply and demand situation. As the functional 

submarket, we use the market of one and two-family houses. In the period of 2011 to 2015 about 

260 purchases are available. All these purchases have the following influence quantities: “area of 

lot” [sq. m], “standard land value” [EUR per sq. m], “construction year” [age – 1946], “living 

space” [sq. m] and “equipping standard” [without unit]. These independent variables are used as 

input parameter 𝑿 for the simulation. In Table 1 the estimated regression coefficients for these 

purchases are presented, which are used as expected value E(𝜷) in the simulation. Detailed 

information of the used spatial and functional submarket can be found in Soot et al. (2016). 

 
Table 1: Result of the multiple linear regression for the used purchases. 

𝛽1 
Intercept 

𝛽2 
Living space 

𝛽3 
Area of lot 

𝛽4 
Construction 

year 

𝛽5 
Standard 

land value 

𝛽6 
Equipping 
standard 

336.40 – 4.57 0.33 12.65 3.05 176.39 
 

3.3 Noise Model 

 

The used noise model 𝜳 is a mixed normal distribution, which consists of a combination of three 

normal distributions with different mean values and variances (Figure 3). The blue depicted normal 

distribution is used for the creation of the normal measurement noise, which correspond to the 

normal distributed residuals 𝒆 in Eq. 1. The mean value of this distribution is 0 and the variance is 

derived from the scattering of the real purchase prices. In the used submarket the RMSE value is 

about 200 € per sq. m. Therefore, a standard deviation of 150 € per sq. m. is used for the creation of 

normal measurement noise. This value is smaller than for the real purchases, but together with the 

outliers the scattering of the noise model 𝜳 is approximately the same. The 95% confidence interval 

boarders of the normal measurement noise are illustrated in green. In this study we define all 

purchases as outlier, which noise is outside of this confidence interval. From this follows that the 

threshold 𝑘 is 294 € per sq. m.  

 

The outliers are generated from the mixture distribution (Figure 3, red line). The mixture 

distribution consists of three normal distributions (𝜇 = [545, 555, 570]; 𝜎 = [15, 30, 60]). The 

selection of the parameters for the mixture distribution depends on several conditions. For the 

simulated submarket we assume that 20% of the objects are traded significantly above the average 

prices. This assumption is possible for areas with few transactions, because the market transparency 

in these areas is not guaranteed. Hence, some buyers pay more as the usual market price. This is the 

reason why the mixture distribution lies only on the right side of the confidence interval. A further 

condition for the construction is to the fact that no outliers are created inside of the confidence 

interval. The probability of the used mixture distribution is nearly zero to generate a random 

number, which is smaller than the threshold 𝑘. We assume that the most probably value of the 

mixture distribution can be maximally of factor two larger than the threshold and it is improbable 

that an outlier is three times larger than the threshold. Furthermore, it is more probably that an 

outlier is close to the usual market price than far away. The mixture distribution satisfies all these 

conditions with the used parameters. The value with the greatest probability is about 546 € per sq. 
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m. and the probability is nearly zero to generate a value larger than 800 € per sq. m. The used 

mixture distribution has a shorter tail on the left side as on the right side. Thus the probability is 

higher to generate a random number closer to the normal distributed noise.  

 

The generation of the random noise 𝜺(𝑗) is realized as follow. From data set 𝑫𝑅
(𝑗)

 80% of the 

purchases are randomly selected. For these purchases random numbers are drawn from the normal 

distributed noise (Figure 3, blue line). The rest of the purchases obtain their noise from the mixture 

distribution. Hence, the outlier ratio 𝛿 of the noise model 𝜳 is between 20% and 25%. The random 

drawing from the mixture distributions is realized with the Acceptance-Rejection-Approach, for 

more details, refer to, e.g., Gelman et al. (2014), Koch (2007).  

 

 
Figure 3: Probability density of the noise model 𝜳. Blue: Normal distributed noise of the purchase prices. Green: 95% 

confidence interval of the normal distributed noise. Red: Mixture distribution of three normal distributions for outlier 

creation.  

 

Then, we check the noise model 𝜳 for plausibility. For this purpose 100 purchases are randomly 

drawn from data set 𝑫𝐴 and simulated purchase prices are created as given in Subsection 3.1. 

Hence, the original purchase prices can be compared with the simulated purchase prices. Therefore, 

the regression coefficients are estimated by Eq. 2 and the predicted prices are determined for both 

data sets. The results are presented in Figure 4. The left figure shows the result of the original 

purchase prices and the right figure shows the result of the simulated purchase prices. Both results 

show similarities. In the low price segment the predicted prices (red crosses) are larger than the 

prices (blue line) and in the high price segment the predicted prices are smaller than the prices. 

However, the RMSE of the simulated prices is with about 250 € per sq. m. a little higher than about 

200 € per sq. m. for the real purchases. This follows from the outliers in the simulated prices, which 

results in a larger spread than with the real prices. But the RMSE of the simulated purchases is not 

so large that the noise model can exist for a real estate market. We can conclude that the used noise 

model 𝜳 is realistic. In future studies alternative noise models should be used for the closed loop 

simulation. The models should be derived from future investigation of noise characteristics in areas 

with few transactions.  
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Figure 4: Comparison between original purchase prices and simulated purchase prices. On the left side: Prediction 

result of regression for 100 random purchases from 𝑫𝑨. On the right side: Prediction result of regression for the same 

100 purchases, whose prices are generated with the noise model. 

 

 

4. RESULTS OF THE INVESTIGATION 

 

The different estimation approaches of Section 2 are investigated with the presented closed loop 

simulation of Section 3. We simulate two different scenarios. The first scenario is a regular supply 

and demand situation on the market with ℎ = 100 purchases. The second scenario is an area with 

few transactions with only 30 purchases. Furthermore, additional setting values for the Gibbs 

sampler and RANSAC are necessary. We found out that the length of warm-up period and the total 

number of samples in the Gibbs sampler are equal to 𝑠1 = 500 and 𝑠2 = 5’000; these estimates are 

derive from the whole repetitions of about 100 runs. The minimum number of iterations 𝑁 for 

RANSAC can be calculated with Eq. 19. In this case RANSAC requires at least 24 iteration with an 

outlier ratio of about 25%. However, to ensure that a good model 𝑀 is selected with a probability of 

99%, a larger number of iteration is necessary. Hence, we increase the number of iteration to 

𝑁 = 1000. The error tolerance 𝑆 is selected via the normal noise distribution of the noise model. 

We use the value 200 € per sq. m. for 𝑆, which is equal to the 80% confidence interval of the 

normal noise distribution. In the reality the error distribution is unknown. For this reason, the choice 

of the error tolerance with real data is not trivial in this case. The determination of the error 

tolerance for real data is investigated in future studies.  

 
Table 2: Results of RMSE from the closed loop simulation. 

 
RMSE for 100 Purchases RMSE for 30 Purchases 

Mean [€/m²] 𝜎 [€/m²] Mean [€/m²] 𝜎 [€/m²] 

Reference 35.66 10.50 68.23 21.27 

Regression 125.57 14.09 154.46 25.69 

Data Snooping 70.36 34.83 158.77 57.04 

Robust Bayesian Approach 97.83 18.92 142.58 32.26 

RANSAC 75.25 31.71 163.44 89.10 

 

The result of the closed loop (RMSE estimation) using 100 purchases is depicted in Figure 5. The 

histograms show the 100’000 calculated RMSE values for the different approaches. The mean value 

and the standard deviation are numerically derived from the distributions and presented in Table 2. 
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As expected, the RMSE result of reference (the optimal case without outliers in the measurements) 

has the smallest mean value and standard deviation. In contrast, the histogram of the regression 

approach shows the influence of the outliers on the estimated parameter. The mean value of 

regression is about 90 € per sq. m. larger than the mean value of the reference. But the spreading of 

both histograms is nearly identical. The result of the robust Bayesian approach is on average 25 € 

per sq. m. and smaller than the mean value of regression. Hence, the robust Bayesian approach 

affect the outliers by down weighting their influence on the resulting RMSE.  Unfortunately, this 

effect is not large enough to make the Bayesian estimation better that the reference solution. The 

solution with the nearest mean value to reference is the solution by means of the data snooping 

approach. The RMSE is equal to approximately 70 € per sq. m. However, Figure 5 shows that two 

peak values exist within data snooping. The larger peak value is very close to the result of 

reference. The smaller peak value corresponds to the mean value of regression. In these cases, the 

data snooping fails and some of outliers are not detected or many good observation are wrongly 

deleted. The reason for this is the masking effect in which an outlier may show up in another 

residual or may hide behind another outlier. The long tail up to over 200 € per sq. m. of the data 

snooping shows the worst case which can happen by the masking effect. These results are worse 

than the RMSE of regression with outliers. The mean value of RANSAC is about 5 € per sq. m. 

larger than the mean value of data snooping, but the histogram of RANSAC has only one peak 

value. However, the histogram of RANSAC has a long tail like data snooping. The reason for this 

may be that the random choice of the 𝑢 purchases isn’t optimal or the used error tolerance 𝑆 is too 

large. In contrast to data snooping and RANSAC, the robust Bayesian approach has no long tail.  

 

 
Figure 5: Histograms of RMSE values for the simulation with 100 simulated purchases and 100’000 iterations. The 

mean values of the histograms are shown as dashed line. 
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Figure 6: Histograms of RMSE values for the simulation with 30 simulated purchases and 100’000 iterations. The 

mean values of the histograms are shown as dashed line. 

 

The simulation result of RMSE for the 30 purchases is depicted in Figure 6 and the determined 

moments of the histograms are presented in Table 2. The mean value and standard deviation of the 

reference are (as in case one) the smallest, but these values are twice larger than the values of the 

simulation with 100 purchases. The reason for this is smaller redundancy (with factor three) in the 

simulation with 30 purchases. This fact is also shown in the RMSE histogram of the reference, 

which has now a tail up to about 190 € per sq. m. The mean value and the standard deviation of the 

regression increase by about 10 € per sq. m.. Hence, the RMSE values of regression are closer to the 

RMSE values of reference in the simulation with 30 purchases. The mean value of the robust 

Bayesian approach is on average 10 € per sq. m. smaller than the regression result. This difference 

is smaller than the corresponding result of the simulation with 100 purchases. In the simulation with 

30 purchases the mean value of robust Bayesian approach is thus not significantly better than the 

mean value of regression. In Figure 6 the RMSE histogram of data snooping has now one peak 

value at about 158 € per sq. m. From this result, it has become clear that the data snooping is not 

appropriate approach in case of only small database. The same result is shown also for RANSAC. 

In the simulation with 30 purchases RANSAC has the largest mean value and standard deviation. 

Furthermore, the histograms of data snooping and RANSAC have longer tails in the simulation with 

30 purchases than in the simulation with 100 purchases. The results for the simulation with 30 

purchases show, that all estimation approaches to deal with outliers lose their efficiency of the 

reliably detection of the outliers.   

 

5. CONCLUSION AND OUTLOOK 

 

In general, it can be noted for the close loop simulation that outlier detection approach (data 

snooping) is only reliable in data sets with an adequate number of purchases. The RANSAC is 

almost as good as the data snooping. However, due to masking effects, the failure probability to 

estimate reliable results is not negligible. Furthermore, the RANSAC need a suitable error tolerance 

𝑆; its derivation from the real data is not an easy task. The optimal choice of the error tolerance for 

real estate data should be investigated in a future study. In contrast to the simulated submarket with 

100 purchases the results of data snooping and RANSAC for the simulated submarket with 30 

purchases are on average worse than the result of the regression. Hence, the failure probability in 

both approaches is relatively high in areas with few transactions.  The results of the noninformative 
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robust Bayesian approach show that this approach isn’t as efficient in outlier detection as data 

snooping and RANSAC in areas with an adequate number of transactions. In contrast, in areas with 

few transactions the robust Bayesian approach has in average better results than the other 

aforementioned two approaches. Furthermore, the robust Bayesian approach does not fail as often 

as data snooping or RANSAC. These simulation results show that the reliable outlier detection in 

data set with few observations is a challenging task. The robust Bayesian approach has the greatest 

potential to deal with outlier in areas with few transactions. In future studies the robust Bayesian 

approach should be improved to deal more efficient with outliers. Furthermore, the noise model of 

the closed loop simulation should be extended in future studies. For this purpose, the areas with few 

transactions should be investigated in more detail.  
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