3D Laser Scanning to Detect Property Encroachment

Victor KHOO, Eric LOW and Zhen Hao NG
Land Survey Division, Singapore Land Authority

XXV FIG Congress
Kuala Lumpur, Malaysia
16 – 21 June 2014

Presenter: Ng Zhen Hao

Outline

Introduction
Evolution in Surveying Techniques
Encroachment Detection
Virtual Survey Using 3D Point Cloud
Benefits of TLS in Encroachment Detection
Concluding Remarks
Introduction

SLA manages approx. 14,000ha State lands & 5000 State buildings.

- Building Management & Land Management teams.
- Land Survey Division.

Encroachment Detection

Conventionally

- Total Stations.
- Traverse based on control markers or RTK.
- Slow and potentially unsafe.
Conventionally
- 2D encroachment sketch.
- Imagination to relate to the ground features.

Laser Scanning Approach
3D Laser Scanner
- Records everything line of sight in x, y, z
- Zero set-back
- Multifaceted structure
Data Acquisition & Processing

Purpose of survey
• To record the whole scene.
• To identify the possible encroachments.

Scanning method
• Common targets and traverse workflow.
• Coordinates based on survey markers or RTK.
• Setup at optimum location for best coverage.
• Total time on site was less than half a day.

Pre-processing
• Register & geo-reference raw point cloud
• Noise removing
• Extract relevant cadastre boundaries
• Overlay point cloud
Virtual Survey Using 3D Point Cloud
Symbolize by classes

- 0-0.03m
- 0.03-0.5m
- 0.5-1.0m
- 1.0-1.5m
- 1.5-2.0m
- >2.0m
Decisions are made on site or in office?

Benefits of TLS

- Fast, accurate and comprehensive.
- Improve productivity.
- Shift the decision making from the site to the office.
- 3D measurement in “virtual survey” mode.
- Safer – non-contact – away from danger.
Concluding Remarks

• Usage & workflow of TLS in encroachment detection.
• Overlaying of point cloud with GIS cadastral survey boundaries.
• Improve productivity, reduce risk & avoid omissions.