Disaster Risk Maps for Gender Empowerment in Disaster Management

Lalitya Narieswari, Sri Lestari Munajati, Mone Iye Cornelia Marschiavelli

INTRODUCTION

The paradigm shift that catastrophic disaster is not only government responsibility but also the entire community to be one basis of National Action Plan for Disaster Risk Reduction.

Women and children are still considered only as victims and get affected completely by hazards and disasters, and “powerless” in the term of mitigation and disaster handling.

The same disaster could bring different impacts for different gender groups.

The aims of this study is to analyze the vulnerability and capacity based on gender in disaster management and present it spatially in order to strengthen the role of gender in disaster risk reduction.
RESEARCH AREA

Bantul Regency – located in Yogyakarta Special Province – Total Area: 508.85 Km2
Divided into 17 Districts
Border:
- North: City of Yogyakarta
- West: Kulon Progo Regency and Sleman Regency
- East: Gunung Kidul Regency
- South: The Indian Ocean

METHODOLOGY

Data and materials
- Topographical maps (Scale of 1: 25,000)
- Demographic Statistics from The Central Bureau of Statistics
- Vulnerable hazard maps
- Questionnaire
METHODOLOGY

Disaster Risk Spatial Analysis

Disaster Risk = H * V/C

This analysis was done by overlaying the Total Vulnerability Map (V/C) with the Existing Hazard Maps (H) using a risk matrix to produce a gender-based disaster risk.
RESULT
RESPONDENTS CHARACTERISTICS

Total respondents = 105 people in 17 Districts - 75 Villages

Most of the respondents (71%) were women, as the main issue was increasing roles of women.

Respondents are mostly under the age of 19-35 years (productive age).

Based on occupation:
- Civil servant: 27%
- Housewife: 16%
- Employee: 18%
- Student: 7%
- Labour: 4%
- Teacher: 3%
- Entrepreneurs: 5%
- Kader/Pamong: 12%
- Other: 8%

Most of the respondents (27%) are civil servants, followed by employees are 18%, and then housewives, 16%.

Based on education level:
- High school: 41%
- Academy – Undergraduate student: 47%
- Secondary School: 12%

The education level of the respondents mostly D1-S1 (47%). This is expected to represent the condition of the village described by respondents.
RESULT
Total Vulnerability Map (V/C)

Gender Vulnerability Map
Gender Capacity Map
Gender Total Vulnerability Map

RESULT
Hazard Vulnerability Map (H)

Flood Hazard Vulnerability Map
Earthquake Hazard Vulnerability Map
Tsunami Hazard Vulnerability Map
RESULT

Disaster Risk Spatial Analysis

- **Flood Hazard Vulnerability Map**
- **Gender Total Vulnerability Map**
- **Gender-Based Flood Risk Map**

XXV International Federation of Surveyors Congress, Kuala Lumpur, Malaysia, 16 – 21 June 2014

Vulnerabilities that need to be anticipated

<table>
<thead>
<tr>
<th>Risk</th>
<th>Vulnerabilities that need to be anticipated</th>
</tr>
</thead>
</table>
| High | - Access to information
 | - Unbalanced division of roles
 | - Population welfare
 | - Number of vulnerable people (toddlers, pregnant women, elderly)
 | - Settlements in disaster prone areas |

Priority Capacity

<table>
<thead>
<tr>
<th>Priority Capacity</th>
</tr>
</thead>
</table>
| - Infrastructure (road, health facilities, education facilities, etc)
| - Improved access to social and economic
| - Early warning |

Program

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
</table>
| - Physical Infrastructure (sea wall, etc)
| - Desa Siaga (the ‘Alert Village’)
| - Gender-specific Aggregate Data |

Action

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
</table>
| - Infrastructure development
| - Socialization to live in a safe area
| - Disaster Workshop
| - Rehearsals for disaster |
CONCLUSIONS

• Determining gender vulnerability quantitatively by means of questionnaires using scoring and weighting method allows us to present gender vulnerability spatially.

• Spatial information about gender strengths will be helpful as guidelines for decision makers and practitioners in disaster mitigation and emergency response.

• The disaster risk thematic maps also useful for strengthening the gender roles in disaster management.

• Decision makers who read the maps will be able to make comparisons and identify the regions as well as can evaluate the efforts to improve the capacity of the high-risk and vulnerable areas.

• Risk mapping process is a complex process and the result is communicative without losing the characteristics of each constituent indicator.