Using Network-RTK for Cadastral Reform in Republic of Korea

Spatial Information Research Institute
Jongmin Lee

Korea Cadastral Survey Corp.

Contents

I Korea Cadastral System
II General Plan of Reform
III Surveying Method
IV Analysis of Experiments
V Conclusion & Question?
1. Korea Cadastral System

Origin of Korea Cadastre

- Established in 1918
 - Land Survey Project (1910–1918)
 - Forest Survey Project (1916–1924)
 - During Japanese Colonial Period
- Fiscal purpose
- Area-Oriented
- Paper-based map
- Low accuracy (depend on scales)

Current Korea Cadastral System

- Computerized Cadastral Map/Books
 - Digital Cadastral map (2000)
- Established Land Information System
 - Korea Land Information System (KLIS, 2003)
 - Integration of land data
- Position-Oriented
- Not improved positioning accuracy
 - ± 2 cm (numerical map region)
 - ± (12–90) cm (graphical map region)
2. General Plan of Reform

Goal of Cadastral Reform

- Convert to World Geodetic System
- Adopt Network-RTK Survey
- Correct map in troubled region
- Integrate land information in digital map
- Promote spatial information industry
- Establish 3D Cadastre
- Easy to access to land information

General Plan of digital Cadastre

<table>
<thead>
<tr>
<th>Category</th>
<th>2020 year</th>
<th>2030 year</th>
<th>Cost (million dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parcel Num.(million)</td>
<td>Ratio</td>
<td>Parcel Num.(million)</td>
</tr>
<tr>
<td>Change Numerical Map</td>
<td>300(6,000)</td>
<td>8 %</td>
<td>400(8,000)</td>
</tr>
<tr>
<td>Non-coincidence Resurvey</td>
<td>282(3,100)</td>
<td>7 %</td>
<td>550(6,130)</td>
</tr>
<tr>
<td>National Land Resolution</td>
<td>188(9,000)</td>
<td>5 %</td>
<td>564(25,000)</td>
</tr>
<tr>
<td>Coordinate Transformation</td>
<td>1,111(31,900)</td>
<td>30 %</td>
<td>2,295(61,907)</td>
</tr>
<tr>
<td>Total</td>
<td>1,881(50,000)</td>
<td>50 %</td>
<td>3,761(100,037)</td>
</tr>
</tbody>
</table>

3. Surveying Method

Total Station Instrument
- Combined theodolite with EDM
- Measure relative angles and distance
- Plane Surveys
- Calculating position using trigonometry

GNSS
- Satellites transmit signals
- Receivers measure travel time of signal or carrier phase
- Calculate absolute 3D positions
- Contain several error resources
 - Clock error (satellites, receivers)
 - Ionosphere/Troposphere Refraction
 - Multipath, satellite deployment
- Single receiver has ±15~20 m accuracy level
3. Surveying Method

Network-RTK

- One of the GNSS augmentation systems
- Needs permanent reference station
- Needs correction generating software
- Centimeter-level accuracy in real-time

Network-RTK in Korea

- NGII provided VRS Service (2007)
- 72 permanent Reference Stations
- Cover the whole country (South Korea)
- Free of charge
- Adopt world geodetic system
- Use only public surveys not cadastral surveys

*NGII : National Geographic Information Institute
3. Surveying Method

Instrument comparison

Total Station
- **Pros.**
 - Easy-to-use
 - Inexpensive instrument
 - Indirect measurement
- **Cons.**
 - Setting Coordinate System
 - Affect control pts. Accuracy
 - Need line-of-sight

Network-RTK
- **Pros.**
 - High precision
 - In real time
 - No need transformation
- **Cons.**
 - Difficult to accuracy control
 - High cost to building CORS
 - Affect site environment

Comparison of devices

Current Survey Method
1. 1st, 2nd order Control Pts. (GNSS)
2. Convert to Local Coordinate
3. 3rd order Control Pts. (T/S)
4. Check Control pts. with real boundary (T/S)
5. Measure real boundary (T/S)
6. Decide boundary based on field book

Network-RTK Survey Method
1. Measure real boundary (VRS)
2. Check measurement data and decide

- No need to 1~4 Steps
- No Accuracy degrade by converting coordinate
- Simplify survey process
4. Analysis of Experiments

Study Area

- Youngjong Island near Incheon International Airport
- Resurveyed in 2010 and numerical cadastral map
- Adopted world geodetic system

Environments

- Open sky
- No obstacle causing multipath
- Number of observed points
 - 3rd order control pts: 19
 - Parcel boundary: 21
- PDOP: 3~5
- Num. of satellite: 8~12
- Measured 2-session
4. Analysis of Experiments

Analysis of control pts.

- **Observation interval**
 - 15 epoch, 2 session
- **Accuracy (std. deviation)**
 - X-axis : 0.9 cm, Y-axis : 0.9 cm
- **Efficiency**
 - 1~2 Surveyor
 - No need 2nd order control pts.

Accuracy less than allowable tolerance
- Save time, manpower
- Reduce work flow

Analysis of control pts.

<table>
<thead>
<tr>
<th>Control Points</th>
<th>Published value (A)</th>
<th>Average Network-RTK (B)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>dx</td>
</tr>
<tr>
<td>3188</td>
<td>347782.48</td>
<td>156070.36</td>
<td>-0.004</td>
</tr>
<tr>
<td>3187</td>
<td>347783.34</td>
<td>156071.99</td>
<td>-0.004</td>
</tr>
<tr>
<td>3186</td>
<td>347784.20</td>
<td>156073.55</td>
<td>-0.005</td>
</tr>
<tr>
<td>3185</td>
<td>347785.06</td>
<td>156074.20</td>
<td>-0.005</td>
</tr>
<tr>
<td>3184</td>
<td>347785.92</td>
<td>156075.76</td>
<td>-0.005</td>
</tr>
<tr>
<td>3183</td>
<td>347786.78</td>
<td>156077.32</td>
<td>-0.005</td>
</tr>
<tr>
<td>3182</td>
<td>347787.64</td>
<td>156078.90</td>
<td>-0.005</td>
</tr>
<tr>
<td>3181</td>
<td>347788.50</td>
<td>156080.45</td>
<td>-0.005</td>
</tr>
<tr>
<td>3180</td>
<td>347789.36</td>
<td>156082.01</td>
<td>-0.005</td>
</tr>
<tr>
<td>3179</td>
<td>347790.22</td>
<td>156083.57</td>
<td>-0.005</td>
</tr>
<tr>
<td>3178</td>
<td>347791.08</td>
<td>156085.13</td>
<td>-0.005</td>
</tr>
<tr>
<td>3177</td>
<td>347792.94</td>
<td>156086.69</td>
<td>-0.005</td>
</tr>
<tr>
<td>3176</td>
<td>347793.80</td>
<td>156088.25</td>
<td>-0.005</td>
</tr>
<tr>
<td>3175</td>
<td>347794.66</td>
<td>156089.81</td>
<td>-0.005</td>
</tr>
<tr>
<td>3174</td>
<td>347795.52</td>
<td>156091.37</td>
<td>-0.005</td>
</tr>
<tr>
<td>3173</td>
<td>347796.38</td>
<td>156092.93</td>
<td>-0.004</td>
</tr>
<tr>
<td>3172</td>
<td>347797.24</td>
<td>156094.49</td>
<td>-0.004</td>
</tr>
</tbody>
</table>

Analysis of boundary pts.

- **Observation interval**
 - 10 epoch, 2 session
- **Accuracy (std. deviation)**
 - X-axis : 3.3 cm, Y-axis : 3.4 cm
- **Efficiency**
 - 1~2 Surveyor
 - No need 3rd order control pts.

This experiment is the part of

"A Study of Application Method with Latest Technology in Cadastral Reform"

<table>
<thead>
<tr>
<th>Boundary Points</th>
<th>Published value (A)</th>
<th>Average Network-RTK (B)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>dx</td>
</tr>
<tr>
<td>1</td>
<td>347777.67</td>
<td>156070.24</td>
<td>0.037</td>
</tr>
<tr>
<td>2</td>
<td>347782.48</td>
<td>156071.99</td>
<td>0.040</td>
</tr>
<tr>
<td>3</td>
<td>347787.36</td>
<td>156073.55</td>
<td>0.040</td>
</tr>
<tr>
<td>4</td>
<td>347792.24</td>
<td>156075.76</td>
<td>0.040</td>
</tr>
<tr>
<td>5</td>
<td>347797.12</td>
<td>156077.32</td>
<td>0.040</td>
</tr>
<tr>
<td>6</td>
<td>347802.00</td>
<td>156078.90</td>
<td>0.040</td>
</tr>
<tr>
<td>7</td>
<td>347806.88</td>
<td>156080.45</td>
<td>0.040</td>
</tr>
<tr>
<td>8</td>
<td>347811.76</td>
<td>156082.01</td>
<td>0.040</td>
</tr>
<tr>
<td>9</td>
<td>347816.64</td>
<td>156083.57</td>
<td>0.040</td>
</tr>
<tr>
<td>10</td>
<td>347821.52</td>
<td>156085.13</td>
<td>0.040</td>
</tr>
<tr>
<td>11</td>
<td>347826.40</td>
<td>156086.69</td>
<td>0.040</td>
</tr>
<tr>
<td>12</td>
<td>347831.28</td>
<td>156088.25</td>
<td>0.040</td>
</tr>
<tr>
<td>13</td>
<td>347836.16</td>
<td>156089.81</td>
<td>0.040</td>
</tr>
<tr>
<td>14</td>
<td>347841.04</td>
<td>156091.37</td>
<td>0.040</td>
</tr>
<tr>
<td>15</td>
<td>347845.92</td>
<td>156092.93</td>
<td>0.040</td>
</tr>
<tr>
<td>16</td>
<td>347850.80</td>
<td>156094.49</td>
<td>0.040</td>
</tr>
<tr>
<td>17</td>
<td>347855.68</td>
<td>156096.05</td>
<td>0.040</td>
</tr>
<tr>
<td>18</td>
<td>347860.56</td>
<td>156097.61</td>
<td>0.040</td>
</tr>
<tr>
<td>19</td>
<td>347865.44</td>
<td>156099.17</td>
<td>0.040</td>
</tr>
<tr>
<td>20</td>
<td>347870.32</td>
<td>156100.73</td>
<td>0.040</td>
</tr>
<tr>
<td>21</td>
<td>347875.20</td>
<td>156102.30</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Within the tolerance
- Save time and manpower
- No additional works

Average Error
- 0.004 ± 0.002

Standard Deviation
- 0.003 ± 0.001
5. Conclusion

Accuracy
- Within tolerance range (2~5 cm)
- More accurate than current regulation (less than 10 cm)

Improve efficiency
- Network-RTK can improve resurvey efficiency (20%)
- Save manpower and simplify resurvey process.

Pre-requisite
- Amend regulation of cadastral survey

Thank you for your attention & Question?