Automated Site Plan Extraction from TLS Point Clouds

Carmen Müller
Tobias K. Kohoutek
Pascal W. Theiler
Institute of Geodesy and Photogrammetry
ETH Zurich
Wolfgang-Pauli-Str.15
8093 Zurich, Switzerland

Outline

• Motivation
• Approach
 – Overview
 – Description
• Results
• Outlook
Motivation

- Increased use of laser scanning in archaeology for
 - Documentation
 - Analysis
 - ...

- Challenge of data handling
 - Data size versus relevant information
 - Automation is needed

How to get a georeferenced site plan in no time?

Approach

Real Object

Point Cloud

Horizontal Histogram

Extraction of Site Plan Elements

Shapefile

(3D-) GIS
Approach

- Generation of horizontal histogram
- Thresholding \(\rightarrow \) binary image
- Extraction of site plan elements
 - Multiple thresholds
 - Segmentation
- Morphological operations
 - Erosion
 - Dilation
- Boundary tracing for vectorization
- Storage in shapefile

Results

St. Maria, Laramate, Perú

- Automated extraction
- Manual interpretation
Domus Aurea, Rome, Italy

Results

Conclusions

- Chosen approach works well for vertical walls
- Other vertical objects connected to the walls cannot be removed automatically (e.g. plants)
- Only areas containing parts of a wall remain in the site plan

- Estimated accuracy
 - historical, well defined walls \rightarrow 1 - 10 cm
 - other, less well defined walls \rightarrow 10 - 20 cm

\Rightarrow Site plans can be automatically generated based on laser scanner data
Outlook

– Improvement of extraction algorithm
– 2D GIS analysis
– 3D Reconstruction

Thank you for your attention!