TOWARD AN INTEGRATED SPATIAL DECISION SUPPORT SYSTEM TO IMPROVE COASTAL EROSION RISK ASSESSMENT: MODELING AND REPRESENTATION OF RISK ZONES

JADIDI A.M., PhD Candidate at Center for research in Geomatics, Laval University, Canada
MOSTAFAVI M.A., Director of Center for research in Geomatics, Laval University, Canada
BEDARD Y., Professor at Center for research in Geomatics, Laval University, Canada
LONG B., Professor at ETI, National Institute of Scientific Research, Canada

Outline

- Introduction
 - Concepts: Risk, its components and Risk Assessment
 - Issues and needs
 - Main Objective
- Proposed solutions
- Achievements
- Conclusion and Future work
Concepts

a) Fishery Environment Agriculture Transport Urban planning and so on.

b) Risk Concept

Varnes 1984; Blong 1996; Cutter 1996; Cutter et al 2003; Boruff et al 2005; Biddie et al 1994; Dauli et al 2009

Coastal Risk Assessment

IPCC 2007; UNEP 2002; UNFCCC 1999; NOAA 2003; Mai and Leinberger 2002

Risk Concept = Hazard x Vulnerability

Nature of the risk

- Multidimensional: involves several elements that need to be analysed, synthesized, cross-tabulated and compared
- Multi-Scale (micro, meso, macro) and hierarchy
- Existence of uncertainty uncertainty propagation
- Modeling and representation of the risk (segmenting technique and attribution of risk value to each segment)
- Fuzzy nature of coastal Erosion

Prevents the elaboration of a coherent vision of the coastal risk for decision makers

Issues and Needs

- Multiple stakeholders under authority of different organizations in local, provincial and federal governments.
 - Huge amount of data from different sources
 - Multiple criteria and interests to evaluate the risk

- Nature of the risk
 - Multidimensional: involves several elements that need to be analysed, synthesized, cross-tabulated and compared
 - Multi-Scale (micro, meso, macro) and hierarchy
 - Existence of uncertainty uncertainty propagation
 - Modeling and representation of the risk (segmenting technique and attribution of risk value to each segment)
 - Fuzzy nature of coastal Erosion

Prevents the elaboration of a coherent vision of the coastal risk for decision makers
Issues and Needs

Potential Technologies

Geospatial Business Intelligence System (GeoBI)
- Analytical system
- Fast synthesis over time
- Trend analysis
- Perform complex querying
- Aggregated Information
- Spatial comparison
- Interactive knowledge discovery

Main Objectives

Developing a Spatial Decision Support System to improve the assessment of coastal erosion risk using SOLAP approach
Proposed Methodology

Coastal Risk Assessment
- Coastal Hazard Identification
- Vulnerability Analysis
- Coastal Erosion
- Social
- Economical
- Environmental

Response Option Process
- Communicating Result to Decision Makers
- Retreat
- Adaptation
- Protection

Impact Analysis
- Communicating Results to Interested Communities
- Scenario Generation

Coastal Risk Zone Representation

SOLAP: Multi-Dimensional Representation
- 5 Dimensions: Spatial, Temporal, Social, Economical, Environmental

SOLAP Architecture
- Dimension
- Member
- Measure
- Fact

Spatial On-line Analytical Processing

SOLAP Data Structure
- Star
- Snowflake
- Mixed
Solution

- Spatial Decision Support System Based on Geospatial Business Intelligence Paradigm
 - Needs analysis
 - Data inventory
 - Coastal erosion risk parameters (hazards, targets, and vulnerability index)
 \[R(T,i) = H(T,i) \times \sum_{i=1}^{N} \text{Rank}(v(i)) \times \omega(T,i) \]
 - Spatial multidimensional conceptual model (dimensions of analysis, measures to calculate, and SOLAP implementation model).

Solution (continued)

Elaborate an Adapted Vulnerability Index

<table>
<thead>
<tr>
<th>Category</th>
<th>Index parameter</th>
<th>Rank 1*</th>
<th>Rank 2*</th>
<th>Rank 3*</th>
<th>Rank 4*</th>
<th>Rank 5*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology & geomorphology (type of coast)</td>
<td>Crop, stable beach with vegetation</td>
<td>6-10m</td>
<td>5-9m</td>
<td>4-5m</td>
<td>3-4m</td>
<td>2-3m</td>
</tr>
<tr>
<td>Geology & geomorphology (type of coast)</td>
<td>Crop, unstable beach without vegetation</td>
<td>2-3m</td>
<td>1-2m</td>
<td>0.5-1m</td>
<td>0-0.5m</td>
<td>2.5-3.5m</td>
</tr>
<tr>
<td>Coast Elevation (DEM)</td>
<td></td>
<td>> 25m</td>
<td>17-24m</td>
<td>11-17m</td>
<td>4-10m</td>
<td>0-3m</td>
</tr>
<tr>
<td>Slope (average)</td>
<td></td>
<td>1-13%</td>
<td>14-20%</td>
<td>21-28%</td>
<td>29-35%</td>
<td>> 36%</td>
</tr>
<tr>
<td>Tide variation (m/year)</td>
<td></td>
<td><-1</td>
<td>1-0.99</td>
<td>1-2</td>
<td>2.1-4</td>
<td>> 4</td>
</tr>
<tr>
<td>Tide range (m)</td>
<td></td>
<td><1</td>
<td>1-1.9</td>
<td>2-4</td>
<td>4.1-6</td>
<td>> 6</td>
</tr>
<tr>
<td>Wave height</td>
<td></td>
<td>0-2.9</td>
<td>3-4.9</td>
<td>5-5.9</td>
<td>6-6.9</td>
<td>> 6.9</td>
</tr>
<tr>
<td>Hydrology and drainage network</td>
<td></td>
<td>Non-presence ---- ---- ---- Presence of faults, fractures or subsidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance between shore and depth of 5m</td>
<td></td>
<td>1001-1200m</td>
<td>701-1000m</td>
<td>700-400m</td>
<td>301-400m</td>
<td>< 300m</td>
</tr>
<tr>
<td>Distance between coastline and the vulnerable object</td>
<td></td>
<td>> 61m</td>
<td>31-60m</td>
<td>21-30m</td>
<td>11-20m</td>
<td>0-10m</td>
</tr>
<tr>
<td>Weakness of geological structure</td>
<td></td>
<td>Absence of faults, fractures or subsidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key indicators:
- People
- Infrastructures
- Building and built environment
- Topography
- Geology and geomorphology
- Hydrology network
- And so on
Achievement:
Spatial Multidimensional Conceptual Model

- Dimensions
 - Spatial
 - Temporal
 - Thematic

- Measures
 - Risk Equation

\[R(T,t) = H(T,t) \times \sum_{i=1}^{N} \text{Rank}(v(i)) \times \omega_i(T,t) \]

SOLAP Interface
Conclusion

- **Geospatial Business Intelligence paradigm (GeoBI)** is a Fast and Efficient SDSS tool for coastal erosion risk assessment

- **Future work:** implementation of the idea is on the way

Comments or Advices are welcome!
Please write to amaneh.jaridi-mardkheh.1@ulaval.ca

Special Thanks to CRG, Sciences géomatiques, Canadian Institute of Geomatics, Association canadienne des sciences géomatiques, Chanplain Branch, Intelli3, Université Laval, NSERC CRSMG