Objectives of this presentation

- Land Administration standard (LADM, ISO/DIS 19152) for the Geoweb
- Relationships with other ISO/TC211 standards, specifically ISO/DIS 19156 Observations and Measurements (O&M)
- Spatial source documents (survey) for adjudication, land transactions, physical planning, mortgage, ...
ISO 19152 (=LADM) Scope

- Reference model (abstract, conceptual schema)
- Land/water, below/above surface
- Basic classes:
 1. parties,
 2. rights, responsibilities, restrictions,
 3. spatial units (incl. spatial sources and spatial representations)
- Terminology enabling communication
- Shared description of formal or informal practices
- Basis for national & regional profiles (application schema)
LADM core

- **LA_Party** Peter has **LA_RRR** ownership on **LA_BAUnit** Peter’s estate consisting of 2 **LA_SpatialUnit** parcels (with same **LA_RRR**)

- **LA_BAUnit** stands for Basic Administrative Unit
Where are we now?

NWIP – WD - CD – DIS - FDIS - IS

<table>
<thead>
<tr>
<th>Voting</th>
<th>NWIP</th>
<th>CD</th>
<th>DIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve</td>
<td>15</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Disapprove</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Abstain</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Not Voted</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Growing support is clear!

- Many comments on NWIP, WD, CD, DIS versions received and processed
- FDIS to be voted on July/August 2012
- IS publication date second half of 2012

External classes (Domains)

- Archives
- Taxation
- Valuation
- Parties
- Addresses
- Land cover
- Land use
- Utility networks

→ Related, but outside the scope of LADM
Contents

1. Introduction
2. Spatial Units
3. Imports from other ISO standards
4. Cadastral surveying
5. Conclusions

LA_SpatialUnit (alias LA_Parcel)

- LA_SpatialUnit specializations: network, building unit
- organized in LA_Layer based on structure or content
- 5 types: point, text (unstructured) line, polygon, and topology
Spatial Representation and Survey

subpackages of SpatialUnit

- Geometry, topology of Spatial Units (based ISO 19107)
- Spatial source (based ISO/CD 19156 Observations and Measurements)

See Annex B for a more detailed description of boundary face strings and boundary faces.
Spatial Units in 3D

- Extend the equivalent concept from 2D to 3D
 \rightarrow 3D parcels are in areas of highest land values

- Challenges:
 1. Majority of parcels is in 2D and should not be lost
 \rightarrow integrate 2D/3D
 2. 3D parcels can be unbounded (up/down) according to National law
 \rightarrow does not fit in ISO 19107, so alternative needed

Contents

1. Introduction
2. Spatial Units
3. Imports from other ISO standards
4. Cadastral surveying
5. Conclusions
Relationships ISO/TC211 family

- ISO/IS 19107 Spatial Schema
- ISO/IS 19108 Temporal Schema
- ISO/IS 19111 Referencing by Coordinates
- ISO/IS 19115 Metadata
- ISO/DIS 19156 Observations and Measurements (O&M)

- GM_Point (19107)
- Coordinate Reference System (19111)
- DQ_Element (19115)
- OM_Observation & OM_Provess (19156)

GM_Point

- Part of large model: ISO 19107
- Many (inherited) methods
- One attribute DirectPosition

Note SC_CRS (ISO 19111)
Observations and Measurements

- In LA_SpatialSource attribute “measurements” is of type OM_Observation (as defined in ISO 19156) and contains the actual source survey data.

- In LA_SpatialSource attribute “procedure” is of type OM_Process and documents the actual survey procedure.
Contents

1. Introduction
2. Spatial Units
3. Imports from other ISO standards
4. Cadastral surveying
5. Conclusions
Survey approach

1. Survey measurements
2. Adjust measurements and fit in existing map
3. Create objects

Existing Situation:
Spatial Unit 1

New Situation:
Spatial Units 2 and 3

Cadastral Survey

Other observations:
Name of Surveyor
Existing parcel_id: SU_1
Spatial Source_id: 2011-2
Date of Survey: 2011, June 20th
References to earlier spatial source documents: 2011-1

Names of Neighbors:
Names of Representatives: n/a
Agreement Y/N: Y
Original O&M into LA_SpatialSource

Direction and Distance Total Station	MP-1
Direction and Distance Total Station	MP-2
Direction and Distance Total Station	MP-3
Direction and Distance Total Station	MP-4
Direction and Distance Total Station	MP-5
Direction and Distance Total Station	MP-6
Existing X,Y (of building corner in database) of MP-1	
Existing X,Y (of building corner in database) of MP-2	
Existing X,Y (of spatial unit vertex in database) of MP-4	
Existing X,Y (of spatial unit vertex in database) of MP-3	
Perpendicular relation 1 (MP-4, MP-5, MP-6)	
Perpendicular relation 2 (MP-3, MP-5, MP-6)	
Distance 1 between MP-3 and MP-5	
Distance 2 between MP-5 and MP-4	
Distance 3 between MP-6 and MP-5	
MP5 and MP6 to be connected to a boundaryfacestring	

Adjustments

- New Point
- Existing Point
Adjustment: Original O&M adjusted to Geo DB using existing Points

Storing the observations

- Stored in LA_SpatialSource: raw data and quality info
- Next calculations: transformations, geodetic adjustments, observations are often redundant (and have small errors); e.g. least squares adjustment computes optimal solution
- Result stored in LA_Point attribute “transAndResult” of type LA_Transformation (which has two parts: 1. transformation of type CC_OperationMethod and 2. transformedLocation of type GM_Point)
- Adjustments can be reiterated (cardinality of attribute “transAndResult” is 0..*)
New Spatial Units created

- New LA_Points used to create new LA_BoundaryFaceStrings and these are used to create new LA_SpatialUnits
- All linked in LADM: chain from LA_SpatialSource to LA_SpatialUnit → instance level diagrams before and after split

Object Creation
Instance level diagram, before split

After

LA_DelicatnessRelsationship

parent-child

LA_RequiredRelationship

parent-child

SU_1 : LA_SpatialUnit
beginLifespanVersion = 1-jan-2010
dendLifespanVersion = 24-jun-2011

SU_2 : LA_SpatialUnit
beginLifespanVersion = 24-jun-2011

dendLifespanVersion = 24-jun-2011

SU_3 : LA_SpatialUnit
beginLifespanVersion = 24-jun-2011

dendLifespanVersion = 24-jun-2011

B_1 : LA_BoundaryFaceString

B_2 : LA_BoundaryFaceString

B_3 : LA_BoundaryFaceString

B_4 : LA_BoundaryFaceString

B_5 : LA_BoundaryFaceString

B_6 : LA_BoundaryFaceString

B_7 : LA_BoundaryFaceString

B_8 : LA_BoundaryFaceString

B_9 : LA_BoundaryFaceString

P-1 : LA_Point

P-2 : LA_Point

P-3 : LA_Point

P-4 : LA_Point

P-5 : LA_Point

P-6 : LA_Point

P-7 : LA_Point

P-8 : LA_Point

P-9 : LA_Point
Conclusion

- Spatial Units are the “glue” joining the spatial description of land to the RRR aspects

- Spatial Units are universal in their land administration application (ownership, easement, utilities, building...)

- Range of representations: text → 3D topology

- Based on other ISO standards ISO 19107, 19111, 19115, 19156

- Spatial Units based on Source Documents and LA_Points

→ More info on the ISO 19152 LADM Wiki
http://wiki.tudelft.nl/bin/view/Research/ISO19152/WebHome