Positioning and Navigation in GPS-challenged Environments: Cooperative Navigation Concept

Dorota A. Grejner-Brzezinska, Charles K. Toth, Jong-Ki Lee and Xiankun Wang
Satellite Positioning and Inertial Navigation (SPIN) Laboratory
Jiti Gupta
ElectroScience Laboratory
The Ohio State University
Phone: +1 614-292-8787
Email: dbrzezinska@osu.edu

Cooperative navigation: outline
✓ Collaborative/cooperative navigation
 ✷ Concept, needs and objectives
 ✷ Navigation sensors used by network nodes (users)
 ✷ Inter-nodal range measurement methods
✓ Preliminary performance evaluation
 ✷ Simulation scenario
 ✷ Individual navigation results
 ✷ Collaborative navigation results
✓ Centralized vs. decentralized integration methods
✓ Collaborative/cooperative navigation: challenges
Proliferation of wireless technologies, mobile computing devices and mobile Internet has fostered a new growing interest in *location-aware systems and services*

- Autonomous navigation of remote sensing platforms
 - Unmanned Aerial Vehicles (UAVs)
 - Unmanned Land-Based and Underwater vehicles
- Personal/pedestrian navigation (PN)
- Asset location and tracking
- Intelligent Transportation Systems (ITS)
- Location Based Services (LBS)
- Etc.

Need for GPS augmentation

![Diagram showing the GPS gap between space and ground level](image)

Courtesy: John Raquet, AFIT
In GPS-challenged and indoor environments, where loss of lock due to interference, jamming, strong multipath or direct line-of-sight blockage, stand alone GPS will not provide reliable and continuous navigation solution.

Sensor augmentation (IMU/INS, magnetometer, barometer, Artificial Intelligence methods, image-based augmentation, etc.) has been used to support a single user navigation task.

Accuracy limitations (dead reckoning navigation)

Recent trend: cooperative/collaborative navigation of multiple users equipped with different sensors

- All users operate together as a network, and all of them are considered nodes in the network
- All users are time synchronized
- Premise: collectively, a network of GPS users may receive sufficient satellite signals, augmented by inter-nodal ranging and other sensory measurements, to form joint position solution.

Example network: dismounted soldiers, emergency crew, formation of robots or UAVs collecting intelligence, disaster or environmental information, etc.

Primary objective: sustain sufficient level of collaborative navigation accuracy in GPS-denied environments.
A navigation system tightly coupled with imaging sensors, terrain and feature databases, and networked with other sensing platforms.

- **Layered multi-platform sensing systems** or the system of systems
- **Objective:** Maintain the required navigation performance for a network of sensing systems (e.g., multi-platform geolocation, multi-platform image mosaics, etc.) when GPS is degraded or not available.
- Suitable for land-based (including ground personnel) and airborne platforms
- Seamless transition between different environments
- Seamless transition between various sensors and platforms = plug-and-play concept

Collaborative navigation: sensors

<table>
<thead>
<tr>
<th>Technique/sensor</th>
<th>Navigation information</th>
<th>Typical accuracy</th>
<th>Selected characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS/GNSS</td>
<td>X, Y, Z, Vx, Vy, Vz</td>
<td>~10 m (1-3 m DGPS)</td>
<td>Line-of-sight system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~0.05 m/s, ~0.2 m/s</td>
<td>Results in a global reference system</td>
</tr>
<tr>
<td>Pseudolites</td>
<td>X, Y, Z, Vx, Vy, Vz</td>
<td>Comparable to GPS</td>
<td>Line-of-sight system</td>
</tr>
<tr>
<td>WLAN</td>
<td>X,Y,Z</td>
<td>2-6 m (strength method)</td>
<td>Penetration through walls, signal attenuation due to distance, multipath interference from other 2.4GHz band</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-3 m (Fingerprinting method)</td>
<td>Operate at GPS and non-GPS frequencies</td>
</tr>
<tr>
<td>UWB</td>
<td>X,Y,Z</td>
<td>dm at 10-20 m range (theoretically)</td>
<td>Resistant to multipath fading, strong signal penetration, possible interference with GPS</td>
</tr>
</tbody>
</table>

- **Accelerometer:** $a_{max}, a_{avg}, a_{rms} < 0.03 m/s^2$
 Subject to drifts
- **Gyroscope:** Heading φ
 0.5° - 3°
 Short term accuracy stability, subject to drifts
- **Image-based:** X, Y, Z
 Few meters
 Line-of-sight system, network approach is geometry-dependent
- **Optical sensor network:** X, Y (Z)
 Few meters
 Image overlap required for 3D
- **Laser:** X, Y, Z
 cm to dm
 Local or global reference system
- **Digital compass/magnetometer:** Heading
 0.5° - 3°
 Long term accuracy stability, subject to magnetic disturbances, sensitive to tilt
- **Digital barometer:** Z
 1-3 m
 Requires calibration by a given initial height

FIG Working Week 2011
Bridging the Gap between Cultures
Marrakech, Morocco, 18-22 May 2011
Collaborative navigation: typical sources of range and angular measurements

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Typical accuracy</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range Measurement</td>
<td>RF Signal/RFID/WLAN/WiFi</td>
<td>meter level</td>
<td>Based on the signal strength or TOA (time of arrival). Relatively poor accuracy</td>
</tr>
<tr>
<td></td>
<td>UWB</td>
<td>submeter at 100 m range (ideal)</td>
<td>RTDOA (round trip TOA) is more practical than TOA. Potential for short- to medium range localization. Robust and accurate</td>
</tr>
<tr>
<td></td>
<td>Terrestrial Laser</td>
<td>mm– cm level</td>
<td>High accuracy. Navigation grade (compact (1.2kg) and short range (~30m)), Survey grade (long range 800m), Wide scan angle (80360 deg)</td>
</tr>
<tr>
<td></td>
<td>Ultrasound</td>
<td>cm level</td>
<td>Short range (cm– a few 15’s of meters)</td>
</tr>
<tr>
<td>Angle measurement</td>
<td>LADAR</td>
<td>mm– cm level</td>
<td>Compact (10cm), High data rate (303 fps), Short range (3~30m), Relatively small FOV (Field Of View): ~43deg</td>
</tr>
<tr>
<td>RF signal, directional or multiple antennas</td>
<td>~degree</td>
<td>Relative orientations can be determined through angle of arrival (AOA) estimation</td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td>~sub degree</td>
<td>Transformation between subsequent imagery provides change in orientation and location</td>
<td></td>
</tr>
<tr>
<td>camera, LADAR</td>
<td>~degree</td>
<td>Transformation between subsequent imagery provides change in orientation and location</td>
<td></td>
</tr>
</tbody>
</table>

Collaborative navigation: typical sources of range and angular measurements

Type:
- **RF Signal/RFID/WLAN/WiFi**
- **UWB**
- **Terrestrial Laser**
- **Ultrasound**
- **LADAR**

Method:
- **RF Signal/RFID/WLAN/WiFi**
- **UWB**
- **Terrestrial Laser**
- **Ultrasound**
- **LADAR**

Typical accuracy:
- **meter level**
- **submeter at 100 m range (ideal)**
- **mm–cm level**
- **cm level**
- **mm–cm level**
- **~degree**

Comment:
- Based on the signal strength or TOA (time of arrival). Relatively poor accuracy
- RTDOA (round trip TOA) is more practical than TOA. Potential for short- to medium range localization. Robust and accurate
- High accuracy. Navigation grade (compact (1.2kg) and short range (~30m)), Survey grade (long range ~800m), Wide scan angle (80~360 deg)
- Short range (cm– a few 15’s of meters)
- Compact (~10cm), High data rate (30~3 fps), Short range (3~30m), Relatively small FOV (Field Of View): ~43deg
- Relative orientations can be determined through angle of arrival (AOA) estimation
- Transformation between subsequent imagery provides change in orientation and location
- Transformation between subsequent imagery provides change in orientation and location

RF – radio frequency
WLAN – wireless local area system
UWB – ultra-wide band

Preliminary test results
based on OSU SPIN Lab implementation
Performance evaluation: simulation scenario

- A team of five ground-based platforms moving on a plane (2D case)
- Platforms A1, A2, A3: equipped with GPS and tactical grade IMU
- Platform B1: equipped with GPS and consumer grade IMU
- Platform C1: equipped with consumer grade IMU only
- Assumed: wireless communication, time synchronization and inter-nodal range measurements between the nodes (platforms)
- GPS position solution in navigation frame: 1Hz sampling rate, accuracy of 1.0 m/coordinate (1σ)
- Repeated GPS gaps
- Inter-nodal range measurements: available at 1Hz sampling rate with accuracy of 0.10 m (1σ)
- **Centralized and decentralized integration** modes were used
- Inter-nodal ranges: ~7 to ~70 m
- Multiple scenarios tested; examples shown next

Field test deployment

- Five-node network
 - A1, A2, A3: GPS, navigation-grade and tactical-grade IMUs
 - B1: GPS, navigation-grade and consumer-grade IMUs
 - C1: navigation-grade and consumer-grade IMUs

Reference trajectory of B1 | Reference trajectory of C1
Performance evaluation: collaborative navigation
tight integration of inter-nodal ranges (1/3)

✓ 600 seconds of simulated test data
 ❖ Repeated 60-sec GPS gaps
 ❖ Inter-nodal ranges < 20m
 ❖ IMU errors estimated based on inter-nodal ranges during GPS gaps
 ❖ Anchor nodes assumed (GPS signals always available)

✓ C1 node: consumer grade IMU
 ❖ Ranging to A1, A2, A3
 ❖ In inertial-only mode: error of ~250 km (2D) in the end of the test

✓ B1 node: consumer grade IMU and GPS (600-sec gap assumed)
 ❖ Ranging to A1, A2, A3
 ❖ In inertial-only mode: max error of ~10 m (2D)

Performance evaluation: collaborative navigation
tight integration of inter-nodal ranges (2/3)

Statistics of collaborative navigation solution for C1 (131-600 second)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Min. [m]</th>
<th>Max. [m]</th>
<th>Mean [m]</th>
<th>Std. [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No GPS outage</td>
<td>0.017</td>
<td>0.860</td>
<td>0.250</td>
<td>0.170</td>
</tr>
<tr>
<td>Outage on A3</td>
<td>0.028</td>
<td>0.976</td>
<td>0.272</td>
<td>0.184</td>
</tr>
<tr>
<td>Outage on A2 and A3</td>
<td>0.022</td>
<td>1.715</td>
<td>0.526</td>
<td>0.378</td>
</tr>
</tbody>
</table>

Statistics of collaborative navigation solution for C1 (131-600 second)
Performance evaluation: collaborative navigation
tight integration of inter-nodal ranges (3/3)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Min. [m]</th>
<th>Max. [m]</th>
<th>Mean [m]</th>
<th>Std. [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No GPS outage</td>
<td>0.01</td>
<td>1.48</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>Outage on A3</td>
<td>0.02</td>
<td>1.55</td>
<td>0.45</td>
<td>0.32</td>
</tr>
<tr>
<td>Outage on A2 and A3</td>
<td>0.03</td>
<td>2.29</td>
<td>0.68</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Statistics of collaborative navigation solution for B1 (131-600 second)

Collaborative navigation: Centralized EKF

Some nodes need AJ protection to assure support for other nodes: (1) local AJ protection or create distributed aperture? (2) how many nodes should have AJ protection? (3) how many nodes and at what separation are needed to create distributed aperture? (4) master node needed to form distributed aperture.
Collaborative navigation: Decentralized EKF

- Range measurements (inter nodal obs.)
- Node 1 GPS, IMU, other sensor data (individual node obs)
- Node 2 GPS, IMU, other sensor data (individual node obs)
- Node n GPS, IMU, other sensor data (individual node obs)
- Ad hoc Network Formation
- Information Exchange
 - Node 1 Nav. solution and STD
 - Node 2 Nav. solution and STD
 - Node n Nav. solution and STD

Master nodes or some nodes will need anti-jamming (AJ) protection to be effective in challenged EM environments. These nodes can have stand alone AJ protection system, or can use the signals received by antennas at various nodes for nulling the interfering signals.

- Network of GPS users, represents a distributed antenna aperture with large inter-element spacing – some advantages and many drawbacks
- Main advantage: increased spatial resolution which allows to discriminate between signal sources with small angular separations
- However, the increased inter-element spacing will also lead to the loss of correlation between the signals received at various nodes. Also, there may be sympathetic nulls
- Challenge: develop approaches for combined beam pointing and null steering using distributed GPS apertures
Collaborative navigation: challenges

- Formulating optimal methodology to integrate sensory data for various nodes to obtain a combined navigation solution
- Obtaining reliable range measurements between nodes (including longer inter-nodal distances)
- Limitation of inter-nodal communication (RF signal strength)
- Time synchronization between sensors and nodes
- Computational burden for the real time applications