The main targets

- A-priori estimation of the measured points’ uncertainty by using the "light" laser scanners.
- Selection of the proper total station and the appropriate scanning distance according to the desired uncertainty result.
- Determination of the scanning parameters such as the scanning steps (horizontally and vertically) and consequently the maximum number of points to be measured, as well as the a-priori standard error of a geometric surface adjustment.

Monte Carlo Technique + Least square Method
"light" laser scanners

- total stations (servo or piezoelectric driven)
- No support of external batteries and individual laptop is needed
- Convenient for geometrical surface documentation
- horizontal and vertical scanning step
- Individual point measurement

<table>
<thead>
<tr>
<th>Total Station</th>
<th>Distance accuracy (RL)</th>
<th>Angle accuracy</th>
<th>Max. Scan speed</th>
<th>Range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topcon IS</td>
<td>±5 mm</td>
<td>±0.3mgon</td>
<td>20 points/sec</td>
<td><250</td>
</tr>
<tr>
<td>Trimble VX</td>
<td>±3 mm ±2 ppm</td>
<td>±0.3mgon</td>
<td>15 points/sec</td>
<td><150</td>
</tr>
</tbody>
</table>

THE A-PRIORI SURFACE ADJUSTMENT

\[
\delta x_i = \delta y_i = \pm \sqrt{\delta D_i^2 + \frac{D_i^2}{(\bar{D} \pm \bar{D})^2} \cdot (\delta \alpha^{2} + \delta \beta^{2})}
\]

\[
\delta z_i = \pm \sqrt{\delta D_i^2 + \frac{D_i^2}{(\bar{D} \pm \bar{D})^2} \cdot \left(\frac{\delta z_i}{\bar{z}} \right)^2}
\]

Monte Carlo technique

\[
\sigma_{x_i}, \sigma_{y_i}, \sigma_{z_i}
\]

Monte Carlo technique in the surface equation via the least square method

\[
\sigma_{i} (adjustment)
\]

\[
M=10^5
\]
The σ_x, σ_y, σ_z values for different instruments, for distance measurement with an accuracy of ± 3mm

The a-priori standard error σ_0 for the adjustment of a plan

\[5x + 8y - 2z = 0 \]
how many points have to be scanned on a concrete surface?

\[\sigma_0 \]

same step, horizontally and vertically

\[\text{step } s = \sigma_0 \cdot z_{95\%} \]

the approximate number \(n \) of the points

\[n = \frac{\text{Area}}{s^2} \]

THE A-POSTERIORI SURFACE ADJUSTMENT

- least square method is used
- The unknown surface is expressed by a linear or no linear function of the calculated \(x, y, z \)
- The unknown parameters are the coefficients \(a_i \)

\[A \cdot \hat{x} = l + u \]

\[\hat{x} = \left(A^T \cdot A \right)^{-1} \cdot A^T \cdot l \]

\[\delta_{a\text{-posteriori}} \]

\[V_x = \begin{bmatrix} \delta_{x_1}^2 & \delta_{x_2}^2 & \cdots & \delta_{x_n}^2 \end{bmatrix} \]

Where

\[A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{bmatrix} \]

\[\hat{x} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}, l = \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_m \end{bmatrix} \]
Statistical Checks

1st

\[\hat{\sigma}_{ai} \cdot z_{95\%} \leq a_i \]

If equation is valid for all the coefficients then the surface is acceptable.

2nd

\[\hat{\sigma}_{a posteriori} \leq \hat{\sigma}_{a priori} \cdot z_{95\%} \]

If equation is valid then the measured points belong to the geometric-mathematic model and hence the surface has no manufacture errors.

APPLICATION

satellite antenna

\[
\frac{(x_i - x_0)^2}{a^2} + \frac{(y_i - y_0)^2}{b^2} = \frac{1}{c} \cdot (z_i - z_0)
\]
The determination of the a-priori parameters

![Graph showing distance vs. adjustment with different accuracy levels.]

- Using a total station
- \(\pm 3^{cc} \) angle accuracy
- Distance = 10m
- \(\sigma_0 = 1.6 \text{cm} \)
- \(s = 1.6 \cdot z_{95\%} = 3.2 \text{cm} \)
- \(\sim 1000 \text{ points/m}^2 \)

The determination of the a-posteriori surface

Trimble VX

- Scanning step = 4cm
- Horizontally and vertically
- 2600 points

<table>
<thead>
<tr>
<th>a(m)</th>
<th>(\sigma_a) (mm)</th>
<th>b(m)</th>
<th>(\sigma_b) (mm)</th>
<th>(x_0) (m)</th>
<th>(\sigma_{x_0}) (mm)</th>
<th>(y_0) (m)</th>
<th>(\sigma_{y_0}) (mm)</th>
<th>(z_0) (m)</th>
<th>(\sigma_{z_0}) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.951</td>
<td>(\pm 0.3)</td>
<td>0.965</td>
<td>(\pm 0.3)</td>
<td>0.001</td>
<td>(\pm 0.0001)</td>
<td>-0.019</td>
<td>(\pm 0.0002)</td>
<td>0.001</td>
<td>(\pm 0.0001)</td>
</tr>
</tbody>
</table>

- \(\pm 3^{cc} \) for the directions
- \(\pm 3 \text{mm} \pm 3 \text{ppm} \) for distance
- \(\sigma_0 = \pm 12 \text{mm} \)
<table>
<thead>
<tr>
<th>REMARKS AND CONCLUSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ The a priori standard error of the points’ adjustment, which belong to a specific surface is strongly influenced by the accuracy that the total station provides and can estimated by using the Monte Carlo technique.</td>
</tr>
<tr>
<td>▶ Knowing the number of points, which are necessary to be captured and the desired σ_0 of the adjustment, the user can have a better understanding of what he needs to collect at the field</td>
</tr>
<tr>
<td>▶ The comparison between the a-priori and the a-posteriori σ_0 of the adjustment can document that the measured surface is constructed according to its specifications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REMARKS AND CONCLUSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ The Monte Carlo technique proved to be a very useful tool for the a-priori determination of the measurements’ uncertainty as well as the standard error of the adjustment.</td>
</tr>
<tr>
<td>▶ The development of total stations, with laser scanner capability, gives the opportunity for a more economical procedure of scanning geometric surfaces compared with the real laser scanner.</td>
</tr>
<tr>
<td>▶ These instruments are more convenient when processing data when compared to the laser scanners, as a less bulky computer is needed. They are more easy to use as they are lighter and have the same on board software as the conventional surveys.</td>
</tr>
</tbody>
</table>
Assessing the use of "light" laser scanners and the Monte Carlo technique for the documentation of geometric surfaces

THANK YOU FOR YOUR ATTENTION

George Pantazis, Konstantinos Nikolitsas