Analysis of the Impact of Rotating GNSS Antennae in Kinematic Terrestrial Applications

TS04E - Laser Scanners, Friday, 20 May 2011

Jens-André Paffenholz¹ Tobias Kersten² Steffen Schön²
Hansjörg Kutterer¹

¹Geodätisches Institut – Leibniz Universität Hannover
²Institut für Erdmessung – Leibniz Universität Hannover

FIG Working Week – Bridging the Gap Between Cultures
Marrakech, Morocco, May 18-22, 2011
Transformation of local, sensor defined coordinates to absolute or global coordinates

- Typical task in terrestrial laser scanning applications
- Transformation parameters: translation and rotations (at least the azimuthal orientation) required
- Observation of transformation parameters (with additional sensors) is worthwhile

→ Most suitable is the use of GNSS equipment

Current realisation of the combination of laser scanner and GNSS equipment at the Geodetic Institute
Transformation of local, sensor defined coordinates to absolute or global coordinates

- Typical task in terrestrial laser scanning applications
- Transformation parameters: translation and rotations (at least the azimuthal orientation) required
- Observation of transformation parameters (with additional sensors) is worthwhile

⇒ Most suitable is the use of GNSS equipment

Current realisation of the combination of laser scanner and GNSS equipment at the Geodetic Institute

GNSS equipment to determine position and orientation in kinematic applications

- *Alternating orientation of an eccentrically mounted GNSS antenna*

⇒ Systematic effects:
 - Polarisation of the satellite signal (Phase wind up effect)
 - Phase centre corrections (offsets and associated variations)
Contents

1 Brief overview about errors related to rotating GNSS antennae

2 Experimental studies
 • Location and used equipment
 • Pre-investigations - measurements with a non-rotating antenna
 • Kinematic measurements with an eccentrically rotating antenna

3 Analysis and interpretation of the results
 • Observation domain
 • Coordinate domain
 • Different mathematical approaches within the GNSS analysis

4 Conclusions and Outlook
Errors related to rotating GNSS antennae

Phase wind up (PWU) effect

- Up to one full cycle due to the signal polarisation
- PWU effect is linear in time and identical for all satellites visible in the topo-centre assuming an antenna horizontally rotating with constant velocity
- Single-differences on a short baseline
 - Constant net effect for all satellites
 ⇒ Absorbed by the receiver clock error

Phase centre corrections (PCC)
Errors related to rotating GNSS antennae

Phase wind up (PWU) effect

Phase centre corrections (PCC)
- Measurements related to electrical phase centre
- Modelling of observations in adjustment often w.r.t. antenna reference point (ARP)
- PCC described by phase centre offset (PCO) and associated elevation and azimuth depending phase centre variations (PCV) close the gap

Sketch of PCC for an eccentrically (and horizontally) rotating antenna

\[\Delta \phi_{\text{ant}}(\alpha,e) = [\text{PCO}\| e] + \Delta \phi(\alpha,e=\pi/2,z) \]
Location and GNSS equipment

Location: Geodetic network with 9 pillars at the roof of the building of the GIH

 GNSS equipment

Reference station (MSD08)
Antenna: LEIAR25 LEIT
Receiver: JAVAD TRE_G3T DELTA

Antenna under test (MSD06)
Antenna: JAV_Grant-G3T
Receiver: JAVAD TRE_G3T DELTA
Location and GNSS equipment

Location: Geodetic network with 9 pillars at the roof of the building of the GIH

GNSS equipment

Reference station (MSD08)
Antenna: LEIAR25 LEIT
Receiver: JAVAD TRE_G3T DELTA

Antenna under test (MSD06)
Antenna: JAV_GRANT-G3T
Receiver: JAVAD TRE_G3T DELTA
Analysis of Rotating GNSS Antennae
Paffenholz et al.

Brief overview about errors related to rotating GNSS antennae

Experimental studies
Location and used equipment
Measurements with non-rotating antenna
Measurements with ecc. rotating antenna

Analysis & interpretation of the results
Conclusions & Outlook

PCV pattern L1: *Javad Grant G3T* antenna

Investigation strategy

In the following study we used:

• Wa1 software using single-differences between receivers to eliminate
• Orbit errors,
• Satellite clock errors and
• Errors due to propagation delays in the atmosphere

• A small baseline of about 14 m ⇒ eliminates all atmospheric effects
Analysis of Rotating GNSS Antennae
Paffenholz et al.

Brief overview about errors related to rotating GNSS antennae

Experimental studies
Location and used equipment

Measurements with non-rotating antenna
Measurements with ecc. rotating antenna

Analysis & interpretation of the results
Conclusions & Outlook

GNSS equipment – investigation strategy

PCV pattern L1: Javad Grant G3T antenna

Investigation strategy
- Simultaneous acquisition of GNSS and reference trajectories
- Creation of reference trajectories
 (1) Theoretic one: Computed based on the known geometry of the GNSS antenna mount on top of the laser scanner
 (2) Experimental one: Tracking of a Leica GRZ122 360° prism with a Leica TS30 tacheometer
- Data analysis in observation and coordinate domain
PCV pattern L1: *Javad Grant G3T* antenna

Investigation strategy

In the following study we used

- *Wa1* software using single-differences between receivers to eliminate
 - Orbit errors,
 - Satellite clock errors and
 - Errors due to propagation delays in the atmosphere
- A small baseline of about 14 m \Rightarrow eliminates all atmospheric effects

Location and used equipment

Measurements with non-rotating antenna and measurements with eccentric rotating antenna.
Performance of the used antenna for estimating coordinates with non-rotating antenna

- Similar combination of antenna, 360° prism and height above pillar
- DOY049: Standard tripod on pillar 6
- DOY041: Additional use of the wing adaption for mounting on a laser scanner
- ΔT for DOY049 and 041 corresponds to difference of sidereal and solar day length

Get a rough idea about the influence of the wing adaption

Antenna setup without wing adaption

![Image of antenna setup without wing adaption]
Pre-investigations - measurements with a non-rotating antenna (DOY049 and 041)

Performance of the used antenna for estimating coordinates with non-rotating antenna

- Similar combination of antenna, 360° prism and height above pillar
- DOY049: Standard tripod on pillar 6
- DOY041: Additional use of the wing adaption for mounting on a laser scanner
- ΔT for DOY049 and 041 corresponds to difference of sidereal and solar day length

Get a rough idea about the influence of the wing adaption

Antenna setup without wing adaption
Pre-investigations - measurements with a non-rotating antenna (DOY049 and 041)

Performance of the used antenna for estimating coordinates with non-rotating antenna

- Similar combination of antenna, 360° prism and height above pillar
- DOY049: Standard tripod on pillar 6
- DOY041: Additional use of the wing adaption for mounting on a laser scanner
- ΔT for DOY049 and 041 corresponds to difference of sidereal and solar day length

Get a rough idea about the influence of the wing adaption

Antenna setup with wing adaption
Pre-investigations - measurements with a non-rotating antenna (DOY049 and 041)

Performance of the used antenna for estimating coordinates with non-rotating antenna

- Similar combination of antenna, 360° prism and height above pillar
- DOY049: Standard tripod on pillar 6
- DOY041: Additional use of the wing adaption for mounting on a laser scanner
- ΔT for DOY049 and 041 corresponds to difference of sidereal and solar day length

Get a rough idea about the influence of the wing adaption

Antenna setup with wing adaption

Skyplot DOY049 – 09:50:38 - 11:25:38
Pre-investigations - measurements with a non-rotating antenna (DOY049 and 041)

Performance of the used antenna for estimating coordinates with non-rotating antenna

- Similar combination of antenna, 360° prism and height above pillar
- DOY049: Standard tripod on pillar 6
- DOY041: Additional use of the wing adaption for mounting on a laser scanner
- ΔT for DOY049 and 041 corresponds to difference of sidereal and solar day length

Get a rough idea about the influence of the wing adaption

Antenna setup with wing adaption

Skyplot DOY049 – 09:50:38 - 11:25:38
Kinematic measurements with an eccentrically rotating antenna (DOY025)

Analyse the impact of rotating GNSS antennae in kinematic terrestrial applications

- Measurements with a laser scanner rotating about its vertical axis (duration for full circle ≈ 13 min, vertical rotation speed ≈ 12.5 Hz)
- ΔT for DOY025, 049 and 041 corresponds to diff. of sidereal and solar day length
- Weight compensation for GNSS antenna and prism
- Laser scanner is oriented to the direction of gravity; for observation of remaining spatial residuals inclinometer were used
- All observations (GNSS and tacheometer) are synchronised by an external computer

Used equipment
Kinematic measurements with an eccentrically rotating antenna (DOY025)

Analyse the impact of rotating GNSS antennae in kinematic terrestrial applications

- Measurements with a laser scanner rotating about its vertical axis (duration for full circle ≈ 13 min, vertical rotation speed ≈ 12.5 Hz)
- ΔT for DOY025, 049 and 041 corresponds to diff. of sidereal and solar day length
- Weight compensation for GNSS antenna and prism
- Laser scanner is oriented to the direction of gravity; for observation of remaining spatial residuals inclinometer were used
- All observations (GNSS and tacheometer) are synchronised by an external computer

Used equipment

![Image of a laser scanner and GNSS antenna setup]
Kinematic measurements with an eccentrically rotating antenna (DOY025)

Analyse the impact of rotating GNSS antennae in kinematic terrestrial applications

- Measurements with a laser scanner rotating about its vertical axis (duration for full circle ≈ 13 min, vertical rotation speed $\approx 12.5\ Hz$)
- ΔT for DOY025, 049 and 041 corresponds to diff. of sidereal and solar day length
- Weight compensation for GNSS antenna and prism
- Laser scanner is oriented to the direction of gravity; for observation of remaining spatial residuals inclinometer were used
- All observations (GNSS and tacheometer) are synchronised by an external computer

Used equipment
Kinematic measurements with an eccentrically rotating antenna (DOY025)

Analyse the impact of rotating GNSS antennae in kinematic terrestrial applications

- Measurements with a laser scanner rotating about its vertical axis (duration for full circle \(\approx 13 \text{ min} \), vertical rotation speed \(\approx 12.5 \text{ Hz} \))
- \(\Delta T \) for DOY025, 049 and 041 corresponds to diff. of sidereal and solar day length
- Weight compensation for GNSS antenna and prism
- Laser scanner is oriented to the direction of gravity; for observation of remaining spatial residuals inclinometer were used
- All observations (GNSS and tacheometer) are synchronised by an external computer

Used equipment
Kinematic measurements with an eccentrically rotating antenna (DOY025)

Analyse the impact of rotating GNSS antennae in kinematic terrestrial applications

- Measurements with a laser scanner rotating about its vertical axis (duration for full circle ≈ 13 min, vertical rotation speed ≈ 12.5 Hz)
- ΔT for DOY025, 049 and 041 corresponds to diff. of sidereal and solar day length
- Weight compensation for GNSS antenna and prism
- Laser scanner is oriented to the direction of gravity; for observation of remaining spatial residuals inclinometer were used
- All observations (GNSS and tacheometer) are synchronised by an external computer

Used equipment and sample trajectory in local geodetic coordinates
For every epoch a new set of PCC for an eccentrically rotated antenna is calculated and projected into the line of sight to the individual satellites:

\[PCO_c = f(PCO, \alpha_0, r, \Delta \alpha) \]

\[PCV_c = f(PCV, \alpha_0, r, \Delta \alpha) \]

\[\Phi_{ci}^j = \Phi_{ci}^j - PWU_{ci}^j + PCO_{ci}^j - PCV_{ci}^j \]

mit:

- \(i := \) Frequenz L1/L2
- \(j := \) Satellit No.

- Initial azimuth of antenna orientation
- Well known geometric parameters (radius and angle inc. between 2 rotation steps)
- PWU effect already treated by analysis software Wa1

1 Personal correspondence with L. Wanninger
For every epoch a new set of PCC for an eccentrically rotated antenna is calculated and projected into the line of sight to the individual satellites.

\[
\begin{align*}
PCO_c &= f(\text{PCO}, \alpha_0, r, \Delta \alpha) \\
PCV_c &= f(\text{PCV}, \alpha_0, r, \Delta \alpha)
\end{align*}
\]

\[
\Phi^j_{ci} = \Phi^j_i - \text{PWU}^j_{ci} + \text{PCO}^j_{ci} - \text{PCV}^j_{ci}
\]

- \(i := \text{Frequenz L1/L2}\)
- \(j := \text{Satellit No.}\)

- Initial azimuth of antenna orientation
- Well known geometric parameters (radius and angle inc. between 2 rotation steps)
- PWU effect already treated by analysis software \(\text{Wa1}\)^1

1. Personal correspondence with L. Wanninger
Analysis of the impact of the PCC by calculation of range corrections

For every epoch a new set of PCC for an eccentrically rotated antenna is calculated and projected into the line of sight to the individual satellites

\[PCO_c = f(PCO, \alpha_0, r, \Delta \alpha) \]

\[PCV_c = f(PCV, \alpha_0, r, \Delta \alpha) \]

\[\Phi^j_{ci} = \Phi^j_i - \text{PWU}^j_{ci} + PCO^j_{ci} - PCV^j_{ci} \]

\begin{itemize}
 \item Initial azimuth of antenna orientation
 \item Well known geometric parameters (radius and angle inc. between 2 rotation steps)
 \item PWU effect already treated by analysis software Wa1
\end{itemize}

\[PCO_{ci}^{c} = f(PCO, \alpha_0, r, \Delta \alpha) \]

\[PCV_{ci}^{c} = f(PCV, \alpha_0, r, \Delta \alpha) \]

\[\Phi^j_{ci} = \Phi^j_i - \text{PWU}^j_{ci} + PCO^j_{ci} - PCV^j_{ci} \]

\[mit : \]

\[i := \text{Frequenz L1/L2} \]

\[j := \text{Satellit No.} \]

1 Personal correspondence with L. Wanninger
For every epoch a new set of PCC for an eccentrically rotated antenna is calculated and projected into the line of sight to the individual satellites

\[
\text{PCO}_c = f(\text{PCO}, \alpha_0, r, \Delta \alpha)
\]

\[
\text{PCV}_c = f(\text{PCV}, \alpha_0, r, \Delta \alpha)
\]

\[
\Phi_{ci}^j = \Phi_i^j - \text{PWU}_{ci}^j + \text{PCO}_{ci}^j - \text{PCV}_{ci}^j
\]

mit:

\[
i := \text{Frequenz L1/L2}
\]

\[
j := \text{Satellit No.}
\]

- Initial azimuth of antenna orientation
- Well known geometric parameters (radius and angle incl. between 2 rotation steps)
- PWU effect already treated by analysis software Wa1\(^1\)

\(^1\) Personal correspondence with L. Wanninger
Analysis of the impact of the PCC by calculation of range corrections

For every epoch a new set of PCC for an eccentrically rotated antenna is calculated and projected into the line of sight to the individual satellites.

\[
\begin{align*}
\text{PCO}_c &= f(\text{PCO}, \alpha_0, r, \Delta \alpha) \\
\text{PCV}_c &= f(\text{PCV}, \alpha_0, r, \Delta \alpha) \\
\Phi_{ji}^{c_i} &= \phi_j^i - \text{PWU}_{ji}^{c_i} + \text{PCO}_{ji}^{c_i} - \text{PCV}_{ji}^{c_i}
\end{align*}
\]

\[\text{mit:}\]
\[i := \text{Frequenz L1/L2}\]
\[j := \text{Satellit No.}\]

- Initial azimuth of antenna orientation
- Well known geometric parameters (radius and angle inc. between 2 rotation steps)
- PWU effect already treated by analysis software \textit{Wa1}\footnote{Personal correspondence with L. Wanninger}

\[\Rightarrow\text{ Re-processing of modified observations and further analysis in the coordinate domain}\]
Original PCC minus rotated PCC

Original PCC minus rotated PCC for GPS L1 signals; DOY025, run15
Original PCC minus rotated PCC for GPS L1 signals; DOY025, run15

Intermediate result

⇒ For GPS L1 magnitudes of up to 5 mm occur at low elevations
NEU coordinates of non-rotating antenna in different scenarios

Differences (to ITRF05 coordinate of pillar 6); 1 Hz data rate and 10° cut-off angle

Intermediate results: Kinematic coordinate estimation potential of the used GNSS antenna
NEU coordinates of non-rotating antenna in different scenarios

Differences (to ITRF05 coordinate of pillar 6); 1 Hz data rate and 10° cut-off angle

Intermediate results: Kinematic coordinate estimation potential of the used GNSS antenna

- Maximum range of 1 cm for northing, easting and up to 2 cm for the up component
- NO significant influence due to the wing adaption
NEU coordinates of rotating antenna (GPS)

Computed differences between experimental reference trajectory and rotated PCC pattern as well as original PCC pattern

- North [m]
- East [m]
- Up [m]
NEU coordinates of rotating antenna (GPS)

Difference between GNSS trajectories with original and rotated PCC applied

Intermediate results: PCC effect for rotating GNSS antenna
Intermediate results: PCC effect for rotating GNSS antenna

Magnitude from 0 \text{ mm} to 4 \text{ mm} for northing and the other way round easting as well as range of discrepancy of 0.4 \text{ mm} for the up component
Difference of NEU coordinates of epoch-wise solution vs. filter-based solution

Differences between experimental trajectory and filter-based solution (GNSMART\(^2\), green circles) as well as epoch-wise solution (Wa1, red bullets)

\(^2\) GNSMART by Geo++

Special thanks go to Nico Lindenthal for the support with the kinematic GNSS analysis with GNSMART.
Conclusions and sum up of the results

Observation domain

- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \implies treated like receiver clock offset in the adjustment
- Effect of up to 5 mm for rotated PCC against original PCC \implies corresponds to horizontal offset component

Outlook
Conclusions and sum up of the results

Observation domain

- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \Rightarrow treated like receiver clock offset in the adjustment
- Effect of up to 5 mm for rotated PCC against original PCC \Rightarrow corresponds to horizontal offset component

Outlook
Conclusions and sum up of the results

Observation domain

- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \implies treated like receiver clock offset in the adjustment
- Effect of up to 5 mm for rotated PCC against original PCC \implies corresponds to horizontal offset component

Outlook
Conclusions and sum up of the results

Observation domain
- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \implies treated like receiver clock offset in the adjustment
- Effect of up to $5\ mm$ for rotated PCC against original PCC \implies corresponds to horizontal offset component

Coordinate domain
- Also indicates an effect of up to $5\ mm$
- PCC effect is dominated by the PCO components
- Noise range of epoch-wise GNSS analysis is larger than rotated PCC effect

Outlook
Conclusions and sum up of the results

Observation domain

- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \(\implies\) treated like receiver clock offset in the adjustment
- Effect of up to 5 \(mm\) for rotated PCC against original PCC \(\implies\) corresponds to horizontal offset component

Coordinate domain

- Also indicates an effect of up to 5 \(mm\)
- PCC effect is dominated by the PCO components
- Noise range of epoch-wise GNSS analysis is larger than rotated PCC effect

Outlook
Conclusions and sum up of the results

Observation domain

- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \(\implies\) treated like receiver clock offset in the adjustment
- Effect of up to 5 mm for rotated PCC against original PCC \(\implies\) corresponds to horizontal offset component

Coordinate domain

- Also indicates an effect of up to 5 mm
- PCC effect is dominated by the PCO components
- Noise range of epoch-wise GNSS analysis is larger than rotated PCC effect

Outlook
Conclusions and sum up of the results

Observation domain
- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \implies treated like receiver clock offset in the adjustment
- Effect of up to 5 mm for rotated PCC against original PCC \implies corresponds to horizontal offset component

Coordinate domain
- Also indicates an effect of up to 5 mm
- PCC effect is dominated by the PCO components
- Noise range of epoch-wise GNSS analysis is larger than rotated PCC effect

Outlook
- Further investigations of filter-based GNSS analysis
- Analysis of the impact of the rotated PCC on the derived transformation parameters
Conclusions and Outlook

Conclusions and sum up of the results

Observation domain

- Double differences analysis shows no significant impact of the used wing adaption in the direct vicinity (see paper)
- PWU effect is constant \implies treated like receiver clock offset in the adjustment
- Effect of up to 5 mm for rotated PCC against original PCC \implies corresponds to horizontal offset component

Coordinate domain

- Also indicates an effect of up to 5 mm
- PCC effect is dominated by the PCO components
- Noise range of epoch-wise GNSS analysis is larger than rotated PCC effect

Outlook

- Further investigations of filter-based GNSS analysis
- Analysis of the impact of the rotated PCC on the derived transformation parameters
Thank your for your attention!

Dipl.-Ing. Jens-André Paffenholz
Geodätisches Institut
Leibniz Universität Hannover
Nienburger Str. 1, 30167 Hannover
Telefon: +49 511 762 – 3191
E-Mail: paffenholz@gih.uni-hannover.de
Website: www.gih.uni-hannover.de

Dipl.-Ing. Tobias Kersten
Institut für Erdmessung
Leibniz Universität Hannover
Schneiderberg 50, 30167 Hannover
Telefon: +49 511 762 – 8926
E-Mail: kersten@ife.uni-hannover.de
Website: www.ife.uni-hannover.de