Impact of Next Generation GNSS on Australasian Geodetic Infrastructure

Chris Rizos
School of Surveying & Spatial Information Systems
University of New South Wales, Sydney, Australia

From GPS to Next Generation GNSS…

2013-20: 4x number of satellites, 6x number of signals!

Profound impact on users, but requiring upgrade of user equipment & reference networks; communications, formats & standards; field techniques, modelling, algorithms, products… including the Geodetic Infrastructure
Impact of Next Generation GNSS…the challenges

- New GNSS & RNSS introduced over the next decade, with particular impact on the Australasian region…
- New GNSS receiver designs…
- Managing the transition to new instrumentation within the global/regional/national geodetic GNSS infrastructure…
- Appropriate “mix” of types & generations of GNSS receivers, and design of future GNSS infrastructure…
- Management/unification(?) of disparate GNSS networks…
- Next generation Geodetic Infrastructure in support of Global Geodesy and satisfying requirements for National Geospatial Frameworks.

From GPS to Next Generation GNSS

Multi-GNSS mean visibility… the “hotspot” in Australasian region
How complex will multi-GNSS receivers be?

If receivers do not track all possible signals, will there be interoperability issues?

Instrumentation Issues...

e.g. Galileo Signals

<table>
<thead>
<tr>
<th>Galileo</th>
<th>E1</th>
<th>1575.42</th>
<th></th>
<th>PRS</th>
<th>C1A</th>
<th>L1A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
<td>NAV OS/CS/SeQ</td>
<td></td>
<td>C1B</td>
<td>L1B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>no data</td>
<td></td>
<td>C1C</td>
<td>L1C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B+C</td>
<td>no data</td>
<td></td>
<td>C1X</td>
<td>L1X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A+B+C</td>
<td>no data</td>
<td></td>
<td>C1Z</td>
<td>L1Z</td>
<td></td>
</tr>
</tbody>
</table>

	E5a	1176.45	I	FNAV OS	C51	L51
			Q	no data	C5Q	L5Q
			I+Q		C5X	L5X

	E5b	1207.140	I	FNAV OS/CS/SeQ	C71	L71
			Q	no data	C7Q	L7Q
			I+Q		C7X	L7X

	E5 (E5a+E5b)	1191.795	I		C81	L81
			Q		C8Q	L8Q
			I+Q		C8X	L8X

	E6	1278.75	A	PRS	C6A	L6A
			B	CNAV CS	C6B	L6B
			C	no data	C6C	L6C
			B+C		C6X	L6X
			A+B+C		C6Z	L6Z

“The IGS in a changing field of developing GNSS”, Urs Hugentobler, EUPOS Symp, Berlin, 1 December 2009
Instrumentation Issues…
e.g. Galileo Signals

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PRS</td>
<td>C1A</td>
<td>L1A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>I/NAV OS/CS/Sol.</td>
<td>CIB</td>
<td>L1B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>no data</td>
<td>C1C</td>
<td>L1C</td>
<td></td>
</tr>
<tr>
<td>B+C</td>
<td></td>
<td>C1X</td>
<td>L1X</td>
<td></td>
</tr>
<tr>
<td>A+B+C</td>
<td></td>
<td>C1Z</td>
<td>L1Z</td>
<td></td>
</tr>
<tr>
<td>E5a</td>
<td>1176.45</td>
<td>I+Q</td>
<td>C5X</td>
<td>L5X</td>
</tr>
<tr>
<td>E5b</td>
<td>1207.140</td>
<td>I+Q</td>
<td>C7I</td>
<td>L7I</td>
</tr>
<tr>
<td>E5</td>
<td>(E5a+E5b)</td>
<td>I+Q</td>
<td>C8X</td>
<td>L8X</td>
</tr>
</tbody>
</table>

'Ver the IGS in a changing field of developing GNSS’, Urs Hugentobler, EUPOS Symp, Berlin, 1 December 2009
```

Imagine the complexity with multi-GNSS receiver designs…

- When to upgrade?
- What tracking capabilities?
- Antenna & cabling issues?
- Interoperability of systems, formats, processes, etc.?
- Only L1 & L5 will be interoperable at frequency level…minimum multi-GNSS Rx?

*) depending on receiver configuration
Geodetic GNSS infrastructure consists of CORS...

How to manage the transition in an orderly manner so that the “final” GI is truly multi-GNSS and delivering improved services?
Managing the Transition from GPS CORS to Multi-GNSS Networks…

- The IGS tracking network is a *patchwork* of regional networks…
- There are still gaps in coverage… *Africa, China/Asia*
- Need to coordinate *upgrade* of IGS network, in step with national & other networks
- Need to incorporate new capabilities… *e.g. real-time IGS*
- Need to have liberal data access policies
- Need higher quality geodetic infrastructure… *not just GNSS*
- *Need unprecedented level of coordination & cooperation!*

From National & Scientific CORS to Global Infrastructure

IGS network upgrade influenced by CORS elements…

Australasian regional stns & networks are vital components
But there are many hundreds of additional GNSS reference stations… how will they be incorporated within the Geodetic Infrastructure under multi-GNSS scenarios?

Homogeneity of Geodetic GNSS infrastructure & operations is unlikely...

How to coordinate different tiers, scales & operators of GNSS CORS?

Will there be an optimal “design” of GI?

What are the non-technical challenges?
Multi-Tier GNSS Infrastructure…

GNSS CORS infrastructure could be hierarchical:

(1) Tier 1 being the IGS-class stations… possibly equipped with "system of system" (SoS) multi-GNSS receivers, perhaps software-configurable, with best monumentation, collocated with other geodetic instrumentation, and so on.

(2) Tier 2 the primary national geodetic CORS network… COTS multi-GNSS receivers, with best instrumentation, providing foundation for datum and NPI.

(3) Tier 3 the state (or secondary) and private CORS networks… less than SoS (unclear by how much) Rxs, supporting many RT-PP users, as well as other GNSS applications.

Coping with Multi-GNSS Complexity

- The minimum specifications of Tier 1, 2 and 3 CORS receivers… this is of course a "moving target" as tracking capability will necessarily change with time as we progress from the current GPS+Glonass, to GPS(modernised) +Glonass, GPS+Glonass+Galileo, G+G+G+Compass, and so on, over the next decade.

- Ratio of Tier 1 to Tier 2 to Tier 3 CORS, and their geometric pattern of deployment across a country, or city or region… the so-called spatial deployment strategy.

- Timeline for the deployment of the multiple generations of GNSS CORS over the coming decade… the so-called temporal deployment strategy.
Specify System
- Target Density, Coverage
- Reliability and Availability
- Site Quality
- Equipment Quality
- Geodetic Reference Frame
- Data Services Produced
- Data Access Policy

Stations
- Own Stations
- Network the Data
- Process Network
- Deliver Service

Process
- Network the Data
- Data Comms from Network Stations
- Control Centre
- Data Archive
- Copy of Network
- Data Processing (for RTK)
- Production of Data Streams
- Distribution of Data Streams
- Data Wholesaling
- Retailer Support

Deliver Service
- Retail Sale of Data Products
- Marketing
- Rover Equipment support
- End User Support
- Liaison with User Comms Providers

Governance - Joint Ventures overseen by ICSM?

Different Organisational Roles in a Multi-Tier, Multi-GNSS Geodetic Infrastructure

AuScope's Geospatial Committee for Science Issues

Geoscience Australia's ARGN Stations

State/Territory Government Non-AuScope Stations

Non-Government Stations

Commercial Partners merge non-Government stations with unified Government network to create value-added services

Value Added Services

User Needs Input from User Groups

Precise by federal, state and territory governments responsible for geodesy (via ICSM)

Governance - Joint Ventures overseen by ICSM?

CRC SI Annual Conference 2008, Matt Higgins
Concluding Remarks…

- The future of multi-GNSS is an exciting one
- Increased complexity of GNSS signals will impact on Rx design, with new classes of receivers developed for different user markets… *top-of-the-line receiver may only be embraced by the geodesy and scientific users*
- Significant impact on all tiers of *Geodetic GNSS Infrastructure*
- Issues such as type of receiver, design of the CORS networks, and deployment strategies will need to be addressed
- Multi-tier model of CORS will evolve, with different Rxs & networks, and different operators, to service different markets
- Challenge is to organise patchwork of different GNSS networks, over the next decade as new GNSS signals are broadcast, into a single *National Positioning Infrastructure*