High resolution terrestrial laser scanning for tunnel deformation measurements

Timothy NUTTENS, Alain DE WULF, Lander BRAL, Bart DE WIT, Leen CARLIER, Marijke DE RYCK, Cornelis STAL
Ghent University, Department of Geography, Gent (Belgium)
3D Data Acquisition Cluster
Timothy.Nuttens@UGent.be

Denis CONSTALES
Ghent University, Department of Mathematics

Hans DE BACKER
Ghent University, Civil Engineering Department

Outline

- Introduction – Diabolo project
- Surveying instruments
- Deformation measurements
- Processing scan data
- Analysis cross-section
- Conclusions
- Future research
Introduction

Diabolo project (Brussels National Airport)

2 tunnels (1.07 km long)

12 sections to monitor

Simultaneous tension measurements

http://ecms.infrabel.be/DMS/ds/nl/7918749
FIG Congress 2010
Facing the Challenges – Building the Capacity
Sydney, Australia, 11-16 April 2010

Timothy Nuttens
Department of Geography – 3D Data Acquisition
Introduction

Monitoring:
7 measurements per section

- After placement (Measurement 0)
- Every week (1st month) (1 – 4)
- After 2 months (5)
- After 3 months (6)
Surveying instruments
Laserscanning?

Accurate 3D data (mm-order)

Difficult site measurement conditions

Very high point density (5 mm resolution)

Short time frame (3 – 30 min)

Surveying instruments
Leica ScanStation 2

Time-of-Flight
Pulse-based

Up to 50 000 pts/sec
Surveying instruments

Leica HDS 6100

Phase-based

Up to 500 000 pts/sec

Trimble S6

Robotic Total Station with scan function

1 pt/sec
Surveying instruments

Experimental standard deviation

<table>
<thead>
<tr>
<th>Scanning instrument</th>
<th>Experimental Standard Deviation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica ScanStation 2</td>
<td>1.6</td>
</tr>
<tr>
<td>Pulse-based Laser scanner</td>
<td></td>
</tr>
<tr>
<td>Leica HDS6100</td>
<td>0.4</td>
</tr>
<tr>
<td>Phase-based Laser scanner</td>
<td></td>
</tr>
<tr>
<td>Trimble S6</td>
<td>0.8</td>
</tr>
<tr>
<td>Robotic Total Station</td>
<td></td>
</tr>
</tbody>
</table>

(When using 5 gon smoothing)

Deformation measurements

Scanning positions:

- Left / Right tunnel bracket
- Central position on tripod

Depending on site conditions

Resolution = 5 mm or higher
Deformation measurements

Targets

Timothy Nuttens
Department of Geography – 3D Data Acquisition
Processing scan data

- Filtering point cloud

Laserscanning:
1.7 – 20.4 million ---> 1.0 – 6.7 million

Robotic total station:
360 – 720 points

Timothy Nuttens
Department of Geography – 3D Data Acquisition
FIG Congress 2010
Facing the Challenges – Building the Capacity
Sydney, Australia, 11-16 April 2010
Processing scan data

- Best-fit cylinder
- Mesh
- Cross-section using Master Reference Target

Analysis cross-section

Radius every 0.1 grad

Smoothing (5 grad)

- no excessive noise
- minimal difference standard deviation
- significance of displacements does not alter substantially
Non-smoothed

Smoothed
Analysis cross-section

Cross-section drawings
Measurement i compared to:

- Design (radius 3.650 m)
- Measurement 0
- Measurement $i-1$

2 sigma intervals (depending on instrument)
Differences in average diameter (mm) - Nominal tunnel section as reference

Differences in average diameter (mm) - Measurement immediately after placement as reference
Conclusions

- High accuracy in difficult site conditions (mm order)
- Phase-based scanner best results
- Workflow to process scan data
- Determination of the deviations of the cross-sections
- Stabilization after 1 – 2 week(s)

Future research

- Optimization workflow
- Correlation with tension measurements
- Best-fit segments
- General trends in movement tunnel...

Timothy Nuttens
Department of Geography – 3D Data Acquisition
Contacts

Timothy Nuttens

Ghent University
Department of Geography - 3D Data Acquisition Cluster
Krijgslaan 281 (Building S8)
B-9000 Gent (Belgium)

Timothy.Nuttens@UGent.be