iGPS used as Kinematic Measuring System

Claudia Depenthal
Karlsruhe Institute of Technology (KIT)
Geodetic Institute
+49 721 608 2727
claudia.depenthal@kit.edu

Introduction

- **iGPS**
 - Formerly Arcsecond, then Metris
 - Since November 2009 – Nikon Metrology NV

- **Used by industrial manufactures**
 - Aerospace, automotive and shipbuilding industries

- **Static and kinematic measurement mode**
 - Rapid development of iGPS system
 - Advancements in kinematic mode
Introduction

- Laser-based indoor system
- Internal time measurements of spatial rays
- Process of triangulation

- Measurement range 2 – 40 m
- Static accuracy < 0.2 mm (depending on numbers of transmitter and geometry)

iGPS Technology

- Components of an iGPS network
 - At least 2 transmitters
 - Mini-vector bar with 2 sensors
 - Amplifier as analog-digital converter
 - Position calculation engine (PCE)
 - Scale-bar for the network
iGPS Technology

- **Transmitter**
 - Rotational speed 40-50 Hz
 - Emits 2 types of signals
 - Strobe signal into the whole working volume
 - 2 fan-shaped beams

- **Fan**
 - Beam width of ± 30°
 - Separated by 90° (horizontal)
 - Tilted at 30° to the spin axes

- **Sensor**
 - Receives signals from each visible transmitter
 - Arrival time is measured

iGPS Technology

- Angle values based on time measurement and fan beams geometry

- **Elevation**
 - Time interval between fan beam 1 and 2

- **Azimuth**
 - Reference time of the strobe
 - Time interval of mean of fan beam 1 and 2
Kinematic Mode of iGPS

- Measurement principle is based on time measurements of non-synchronous signals
- The sensor moves during a time measurement
- Delay times for azimuth and elevation determination
- Elimination of these effects
 - Good internal time base
 - Interpolation method

4D Test and Calibration System

- Delay time determination
- Time-referenced system (real time)
- Tiltable rotating arm

- Angular position $\theta = \pm 4.2''$
- Velocities up to 6 m/s (rotating arm end)
Time Referencing

- Analyzing the kinematic performance of iGPS time-referenced measurements are strictly necessary
- PCE Digital Input Module
 - Since summer 2009
 - Synchronize an external digital input signal with iGPS data
- DIM enable time-referenced measurements
- Function generator as external trigger

Measuring Result Examples

- Measurement procedure
 - 4 transmitter around the rotating arm
 - Mini-vector bar at the rotating arm end
 - Scale bar for bundling
 - Different rotating arm positions (horizontal, slant, vertical)
 - Angular velocities up to 160°/s (3 m/s)
 - Leica laser tracker LTD 500 (vertical rotating arm)
 - Surveyor software version 1.2.30
Static Measurement

- Horizontal rotating arm position
 - iGPS (top and bottom sensor)
 - Laser tracker (LTD)
- 3D circle
 - Planar and tangential deviations $< \pm 60\mu$m

Kinematic Measurement

- Horizontal rotating arm position
 - iGPS (top and bottom sensor)
- 20°/s (0.4 m/s), 4 revolutions
 - Tangential deviations < -0.5 mm
- 160°/s (3 m/s), 4 revolutions
 - Tangential deviations < -1.3 mm

spatiotemporal – position and time
Kinematic Measurement

- Horizontal rotating arm position
 - iGPS (top and bottom sensor)
 - 20°/s (0.4 m/s), 4 revolutions
 - Tangential deviations < -0.2 mm
 - 160°/s (3 m/s), 4 revolutions
 - Tangential deviations < -0.3 mm

time - offset 0.3 ms – spatial – path tracking

![Graphs showing measurement results](image)

Kinematic Measurement

- Vertical rotating arm position
 - iGPS (top and bottom sensor)
 - Laser tracker (LTD)

This geometrical configuration is not well suited to the iGPS system but the only configuration to use iGPS and laser tracker together

- 120°/s (2.2 m/s), 4 revolutions, radial and tangential deviations

![Graphs showing measurement results](image)
Conclusion

- The aim was to analyze the kinematic performance of iGPS system
- The system could collect and process data up to velocities of 3 m/s
- Spatiotemporal – time offset ("running ahead" about 0.3 ms)
- Tracking deviations
 - "spatial" (3D) at 3 m/s less than 0.3 mm
 - "spatiotemporal" (4D) at 3 m/s less than 1.3 mm
- The development of latest iGPS system has reached to reduce the theoretical delay time
- iGPS can be used as a static or kinematic measuring system
- Due to the flexible measuring performance iGPS provides an interesting range of applications

Thank you very much for your attention