AUSGeoid09 allows you to convert between reference frames
- Discuss why AUSGeoid09 is different to previous AUSGeoid models
- Computing AUSGeoid09
 - Gravimetric component
 - Geometric component
- The accuracy of AUSGeoid09

Reference Frames
- Types of Geodetic Reference Frames
 - International Terrestrial Reference Frame (ITRF)
 - Geocentric Datum of Australia (GDA94)
- These frames were developed to work well with GPS observations
 - However, these reference frames ignore gravity
 - GPS heights are measured relative to ellipsoid
 - Basic elliptical representation of Earth
- Users still need an orthometric height datum
 - Australian Height Datum
 - Onshore realisation of MSL
AUSGeoid09

- AUSGeoid09 converts GPS heights to AHD heights to within 0.05 m across most of Australia
- Subtract the AUSGeoid09 value from ellipsoidal height (GPS height) to acquire AHD heights
- Combines the speed of GPS data acquisition and the practicality of having mean sea level as the reference surface
- So how does this differ to previous versions of AUSGeoid?

The cause of the offset

The mass of water in southern and northern Australia is almost the same, however, the density is not. The warmer/less dense water off the coast of northern Australia (red) is approximately one metre higher than the cooler/denser water off the coast of southern Australia (yellow).

Therefore, the AHD is about 0.5 metre above the geoid in northern Australia and roughly 0.5 metre below the geoid in southern Australia.
The gravimetric component
- Ellipsoid to Geoid
- Based on similar principles to previous AUSGeoid version

The geometric component
- Geoid to AHD offset
- Model the ~1 m trend

Two components are combined into a single national grid of ~2 km resolution to model the ellipsoid to AHD separation.

The ~100 m variation from SW to NE Australia is caused by gravitational variability caused by:
- crust thickness
- crust type
- magma distribution etc.

previous AUSGeoid versions

Gravimetric Component

Developed by WRL
Discretise (Curtin Uni)
Spherical harmonic synthesis of:
- EGM2008
- 1.3 million gravity obs.

Major improvements from GRACE data
Removed long wavelength anomalies
Removed terrain-modelling errors of AUSGeoid98 in mountainous regions

Geometric component
- The offset between the AHD and geoid
- Approximate 1 m trend
- This requires points in Australia on which both the AHD height and ellipsoidal height are known
 ... at as many locations as possible

AUSGeoid09: similar yet different
Offset between AHD and the geoid
Offset computed at 5333 points
Primary dataset
1100 GPS & AHD collocated
Nahd = h – Hahd
Secondary dataset
4233 AHD points
Offsets derived by adjustment of the Australian National Levelling Network (ANLN)
Orthometric heights of primary dataset held fixed
AHD heights of ANLN warped onto the geoid

Combining the two surfaces
- Ellipsoid to AHD (Nahd) offset was defined at 5333 positions
- Bilinear interpolator used to determine the corresponding gravimetric geoid value at each of the 5333 points
- Offset between AHD and gravimetric geoid was computed
- Least-Squares Collocation method used to interpolate an AHD to gravimetric geoid offset value at every node on a ~2 km grid
- The gravimetric geoid value was also computed at each of these nodes
- Gravimetric geoid value + geometric offset = AUSGeoid09

Accuracy of AUSGeoid09
- Accurate to within 0.05 m across most of Australia
- Some areas still have misfits
- Red – AHD height is below interpolated surface
- Blue – AHD height is above interpolated surface
- Misfits computed using Cross Validation method
- Predominant cause of misfit is distortions of ANLN

Dealing with misfits
- Some errors can be rectified if State Survey Authorities wish to change the AHD height of the point
- Others we know are there but we can't change
 - These are AHD heights which have been used for many years
 - You can't simply change these heights. This is a reference for the community
- This is therefore a WARTS AND ALL MODEL
 - Advantage of having dense dataset
- Important to note that the majority of these large misfits occur in relatively sparsely populated areas
Benefits of AUSGeoid09

- In the past, if GPS users needed higher accuracy than 0.5 m, they would have to perform expensive surveys to estimate the offset between the AHD and the geoid.
- This involved performing lengthy levelling surveys to transfer AHD heights and hours of GPS data acquisition in the work area.
- Upon release of AUSGeoid09, AHD heights can be computed in real time to within 0.05 m across most of Australia.

AUSGeoid09 summary

- AUSGeoid09 has greatly improved GPS users ability to compute AHD heights in Australia.
- Previous versions of AUSGeoid were predominantly based on gravity observations and had an error of up to 0.5 m.
- AUSGeoid09 has an additional geometric component to model the AHD to geoid offset.
- Modelling the north-south trend and underlying improvements to the gravimetric geoid has improved the accuracy from 0.5 m to 0.05 m across most of Australia.

How to use AUSGeoid09

- Once available users can either:
 - Download the AUSGeoid09 data file from the Geoscience Australia website and install it in their GPS receiver to perform GPS to AHD corrections in real time, or
 - Perform the computation online either interactively, or by submitting a batch file.
Secondary dataset

- Offset between Hag and Hahd.
- All GPS locations (Hag = h – Nag).
- Hag points held fixed in adjustment of ANLN.
 - Warps ANLN onto the geoid.
 - Converts ANLN Hahd heights to Hag heights.
- Offers great number of offsets across the country.
- Levelling follows the geoid.
- Only uncertainty in the derived Hag heights comes from the uncertainty in the levelling data.
- This is accounted for in the adjustment with lower weighting than the GPS & AHD collocated points.

Transformation from ITRF to GDA94

- ITRF coordinates are transformed back from ITRF2005 to GDA94 using Dawson & Steed parameters.
- The homogeneity of the baseline lengths is preserved in this transformation.
- The transformation does not degrade the accuracy of the solution.
 - Precise orbits preserved.
 - Absolute antenna modelling preserved.

Potential sources of misfit

1. Levelling network
 - Levelling errors, one way levelling.
 - Bound to occur in > 200,000 km of levelling.
2. Geoid anomalies
 - Unlikely to be the cause given that the GRACE data has greatly improved gravity modeling capability.
3. GPS errors
 - Antenna height – MAYBE – have already found examples.

Future Work

- Understand the relationship of AHD relative to contemporary sea level.
- Understand dynamics of AHD.
 - e.g. caused by subsidence (Perth 5 mm / yr).
 - e.g. changes within the Murray – Darling Basin.
- Stronger understanding of links between AHD and chart datums.
 - Onshore to offshore connection to link bathymetry to DEM’s.
 - Need associated uncertainties.
Why do you need to use the geoid?

- Often get asked why you can't just have an ellipsoid to AHD correction surface without using the geoid.
- The AHD is based on gravity
- Without the north – south trend AHD would very closely match the geoid
- All leveling is done on the geoid
- Geoid provides higher resolution information
- Collocated GPS & AHD datasets only provide limited offsets to the ellipsoid

Web Statistics

- In 2009 ...
 - 28,210 - hits looking for AUSGeoid98 information.
 - 6,177 - hits computing AUSGeoid98 values online.
 - 3,373 - downloaded AUSGeoid98 data files for use in GPS receivers.
Geodesy

Geodesy is measuring and modelling ...

Reference Frame

- All measurements of the Earth’s shape, rotation rate and geopotential field need a frame of reference
- For example, we can define a reference frame for the Earth’s shape with basic information such as the scale (size) and the origin
- This provides an accurate reference surface / datum on which our science is based
Height above sea level

- Apart from advantage of being based on gravity
- Knowing your height above sea level is also useful & practical
- Coastal vulnerability / tsunami inundation studies
 - Only by knowing the heights of infrastructure relative to the sea level can we model impact / cost

Height above sea level

- Satellite / Airborne data
 - e.g. Engineering – large scale LiDAR surveys of new highways, subdivisions etc.
 - Most useful to have this information relative to the same vertical datum as the roads, infrastructure etc.

What is a geoid?

- Geoid is a surface of equal gravitational potential at each point
 - e.g. surface of the water if Earth stopped spinning
- Computed from combination of space borne and terrestrial gravity observations
- An irregular surface
 - magma distributions, mountain ranges, deep sea trenches, etc.

Town Planning

- Avoid placing hospitals in flood zones
- Ensure heights of crocodile fences exceed flood high water marks
Why is a geoid useful?

- It provides a reference surface for geophysical and geodetic surveys
 - e.g. airborne geophysics surveys
- It's a reference surface which **approximates** MSL / AHD
 ...but not exactly

AUSGeoid09 in use: Scenario

- Exposure modelling in Perth for flooding or storm surge
- Data you need
 - LiDAR data (to produce 0.1 m accurate DEM)
 - Bathymetry data
 - Satellite imagery to drape over DEM
 - Exposure database containing heights of infrastructure

AUSGeoid09 in use: Scenario

- Exposure Database
 - Heights of hospitals, houses, schools, crocodile farms etc are all stored within the exposure database
 - These heights can be observed by GPS and AHD heights can be obtained in real time
 - Simple way of augmenting your infrastructure database

Why is a geoid useful?

- It provides a reference surface for geophysical and geodetic surveys
 - e.g. airborne geophysics surveys
- It's a reference surface which **approximates** MSL / AHD
 ...but not exactly

AUSGeoid09 in use: Scenario

- Exposure modelling in Perth for flooding or storm surge
- Data you need
 - LiDAR data (to produce 0.1 m accurate DEM)
 - Bathymetry data
 - Satellite imagery to drape over DEM
 - Exposure database containing heights of infrastructure

AUSGeoid09 in use: Scenario

- Exposure Database
 - Heights of hospitals, houses, schools, crocodile farms etc are all stored within the exposure database
 - These heights can be observed by GPS and AHD heights can be obtained in real time
 - Simple way of augmenting your infrastructure database
AUSGeoid09: Converting GPS heights to AHD heights – FIG 2010

What is the AHD?

- The Australian Height Datum (AHD) is the reference surface for heights in Australia.
- It is an onshore realisation of mean sea level.
- Orthometric surface based on gravity.
- Mean sea level value observed at 32 tide gauges from set to 0.000 m AHD.
- Over 200,000 km of levelling was performed to transfer heights relative to mean sea level across the country.

Previous AUSGeoid models

- All AUSGeoid models have been designed to assist users in converting GPS heights to AHD heights.
- Previous versions of AUSGeoid ('93, '98) are known as gravimetric geoids:
 - Based predominantly on gravity.
 - Did not model one metre trend between AHD and geoid.
 - Provided you with a height above the geoid, not AHD heights.
 - In error by as much as 0.5 m.

The problem

- Global Positioning System (GPS) receivers, which are now widely used for accurate positioning, DO NOT provide heights relative to mean sea level / AHD.
- GPS receivers provide you with a height above the ellipsoid.
Overview – Part 2 – AUSGeoid09

- Gravimetric component
- Geometric component
- The accuracy of AUSGeoid09
- Future work
- Scenario showing how AUSGeoid09 can be used