Modelling of Ground Surface Deformations with Finite Element Method in Fault Zones for the Purpose of Designing Geodetic Observations

(4283)

Piotr GRZEMPOWSKI, Stefan Cacorn

Institute of Geodesy and Geoinformatics
Wroclaw University of Environmental and Life Sciences

RESEARCH AREA

The Central-European Subsidence Zone
FSM - Fore-Sudetic Monocline
FSB - Fore-Sudetic Block

Location of the research area and the European tectonic units in the background

(geological background Majdański et al., 2007 after Cymmerman.)
Facing the Challenges – Building the Capacity
Sydney, Australia, 11-16 April 2010

Geological Conditions

- Location of the GPS points and the regional tectonic units in the background

GPS Network

"The Middle Odra Faults Zone"

Finite Element Method

Geometrical Model and Boundary Conditions

- 65 km in length and 15 km depth geological cross-section
- Three-node triangular elements (3-node linear plane strain triangle)
- Plane strain state and a linear-elastic relationship between stress and strain
- Vertical displacements: -1.2 mm/year
- Horizontal displacement: 0.6 mm/year
FINITE ELEMENT METHOD
PREDICTION OF THE GROUND SURFACE DISPLACMENTS

GPS point (PKT)
vertical displacement (U2) from FEM model,
velocities of vertical displacements in precise levelling lines (NIV)

horizontal displacements (U1)

boundary conditions and vertical displacements from FEM model (U2)

CONCLUSION

The presented study related to the problem of reliable monitoring of the lithosphere’s surface in the Middle Odra Fault Zone in Poland is a preliminary stage of research on the subject.

In 2008 GPS network covering an area of 6000 sq km has been established. Locations of points have been correlated with the regionals geology, tectonic structure and results of FEM analyses.

Reliable results of GPS measurements and their comparison with FEM model will be realized after third campaign in this year.
Thank you for yours attention!

ACKNOWLEDGEMENT

This work has been financed as a research project from the Polish science funds for the period 2007 – 2010 (No. NN526110033). Calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), grant No. 131.

REFERENCES

Grzempowski P., Badura J., Cacop S., Przybylski B., Recent vertical movements in the Wroclaw section of the Middle Odra Fault Zone, Acta Geodynamica et Geomatieria, Vol. 6 No. 3 (155), Prague 2009, pp. 339-349.

Kontny B., 2003, Geodetic research of contemporary kinematics of the main tectonic structures of the polish Sudetes and the Fore-Sudetic Block with the use of GPS measurement, Scientific papers of the Agricultural University of Wroclaw, 468, dissertation CCII.
