Specifications for Establishing a Road Data Infrastructure

Per Isaksson
Swedish Road Administration

Programme

– The information refinement process
– Some characteristics of the EuroRoadS specifications
 • choice of basic standards
 • reference systems
 • data exchange
– Experiences from practical use of the specifications
– Some ideas for deployment and development
The EuroRoadS project

• **Scope**
 – To lay the ground for the creation of a pan-European standardised digital road data infrastructure built on identified user requirements.
 – To simplify exchange of digital road data within and between different countries

• **The delivered specification framework consists of**
 – Road network information model
 – Definition of core European road data
 – Specification of a data exchange model and format
 – Meta-data catalogue
 – Terminology catalogue
 – Quality model

Positioning of the specifications

The information refinement process
Characteristics of the specifications

Choice of basic standards

- National Standards/Solutions
- GDF
- RADEF
- Related projects
 - ActMap
 - SpeedAlert
- ISO 19100
- EuroRoadS

Reference systems

- Historically common to use linear referencing methods
- If road data is to be used together with other georeferenced spatial data it is necessary to be able to use geodetic reference systems
Characteristics of the specifications

Direct reference systems

- **CTS**
- **ETRS 99**

Refinement

- WGS 94: Recalculcation of geodetic datum
- Ellipsoid: GRS 80
- ETRS: [EUREF 89] Stable over time

Refinement

- National reference system i.e. Sweref 99
- National reference system X

Characteristics of the specifications

Data exchange

- **Important directives**
 - The road data exchange format must be able to handle both complete data sets and just data changes (transaction handling)
 - It is important to solve border linking (the merging of adjacent road datasets)
Characteristics of the specifications

Data exchange

- Road network information model
 - Based on application schema rules from ISO 19100
 - In practice - create application schemas using the UML language defining classes that represent the various concepts from the EuroRoadS domain.

- EuroRoadS exchange format
 - Providing data - each content provider will need to transform their data according to the EuroRoadS representation.
 - Using data - users may also need to transform data received, in the EuroRoadS format, according to their own data model.

- Unique universal identifiers (UUID/GUID)
 - Unique universal Identifiers (UUID/GUID) are used in the EuroRoadS specification framework to secure that each element can be properly addressed.
Characteristics of the specifications

Data exchange

- Core European road data – Road attributes and features
 - **Mandatory attributes**
 - Geometry, Universal ID (UUID/GUID), Form of Ferry, Form of Node, Form of Way, Functional Road Class
 - **Optional attributes and features (common descriptions)**
 - Examples: Border Node Information, Manoeuvre, Grade Separated Crossings, Number of Lanes, Junction Information, Restrictions for Vehicle, Road Number, Road Width, Road Surface, Speed Limit, Steep Gradient
 - **User defined attributes and features**
 - Possibility to define and supply unique data

- **Border nodes**
 - Agree on geometry for the border (neighbours need to communicate and agree with each other)
 - Identify roads that cross the border
 - Add a node attribute to each border node
Experience from practical use

Demonstrations in the EuroRoadS project

- **Objectives for the test and verifications**
 - Demonstrate and validate the use of the EuroRoadS specification framework.
 - Demonstrate a complete data chain from data acquisition to final services.
 - Support dissemination and networking through concrete implementation of results.

<table>
<thead>
<tr>
<th>Public Sector</th>
<th>Private Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data acquisition</td>
<td>Application & service</td>
</tr>
<tr>
<td>Local databases</td>
<td>Application specific format</td>
</tr>
<tr>
<td>EuroRoadS Framework</td>
<td></td>
</tr>
</tbody>
</table>

- **Some lessons learned**
 - EuroRoadS framework documents generally - high quality and consistent
 - Concepts of the information model - well described
 - EuroRoadS exchange format (GML) for complete data sets covering large areas leads to very large data volumes.
Experience from practical use

Demonstrations in the EuroRoadS project

- Information model for network description offers a lot of flexibility and liberty for usage by supplier

- Processing steps and effort depends on
 - The supplier information model and the target application model
 - Data user efforts are increasing as soon as provided data have to be changed for the use in the final application

Experience from practical use

STBR II - Subproject WP 4-1
Road Information Exchange System (Barents Road Database)

• Some lessons learned and some conclusions
 - Complex mapping needed - the ability to map existing data into the extended EuroRoadS specifications differs between participating countries.
 - This will affect the quality and usefulness of data.
 - Delivery of updates will probably be difficult.
 - Is important to do further work on the harmonisation.
 - It is important remove any uncertainties regarding mapping of data.
 - The INSPIRE directive will probably lead to that all European countries will harmonise existing definitions in the national databases.
Experience from practical use

STBR II - Subproject WP 4-1

- The level of detail and accuracy differs in the data deliverer.
- There is a need to harmonise policies for data distribution and the rights to use the data.
- The question of the role of public authorities in the data refinement has to be addressed.
 - Historically public authorities have covered the entire chain from data capture to end-user applications.
 - In the future public authorities probably will focus on the role as content provider.

Deployment and development

EuroRoadS contribution to INSPIRE

- Transportation network
- Hydrography
- Topography
- Administrative boundaries
- XXX
- INSPIRE
Deployment and development

Need for extensions and development

• Core data extensions
 – Added features and clarified definitions from the Barents-project is one input for needed updates of the EuroRoadS specifications of core data.

• Reference systems
 – To make road data useful to third party map providers it is in most cases important to be able to use some “map-based on-the-fly location referencing”.

Thank You for Your attention!

Questions?

Contact
Per Isaksson
Information Technology - Road Network Systems
Swedish Road Administration
SE-78187 Borlänge, Sweden
Tel. +46 243 75620
per.isaksson@vv.se
www.vv.se